Raza Shaina, Ding Chen
Ryerson University, Toronto, ON Canada.
Int J Data Sci Anal. 2022;13(4):335-362. doi: 10.1007/s41060-021-00302-z. Epub 2022 Jan 30.
Fake news is a real problem in today's world, and it has become more extensive and harder to identify. A major challenge in fake news detection is to detect it in the early phase. Another challenge in fake news detection is the unavailability or the shortage of labelled data for training the detection models. We propose a novel fake news detection framework that can address these challenges. Our proposed framework exploits the information from the news articles and the social contexts to detect fake news. The proposed model is based on a Transformer architecture, which has two parts: the encoder part to learn useful representations from the fake news data and the decoder part that predicts the future behaviour based on past observations. We also incorporate many features from the news content and social contexts into our model to help us classify the news better. In addition, we propose an effective labelling technique to address the label shortage problem. Experimental results on real-world data show that our model can detect fake news with higher accuracy within a few minutes after it propagates (early detection) than the baselines.
假新闻在当今世界是一个实实在在的问题,而且它变得更加广泛且更难识别。假新闻检测中的一个主要挑战是在早期阶段检测到它。假新闻检测中的另一个挑战是用于训练检测模型的标记数据不可用或短缺。我们提出了一种新颖的假新闻检测框架,该框架可以应对这些挑战。我们提出的框架利用新闻文章和社会背景中的信息来检测假新闻。所提出的模型基于Transformer架构,它有两个部分:编码器部分从假新闻数据中学习有用的表示,解码器部分根据过去的观察预测未来的行为。我们还将许多来自新闻内容和社会背景的特征纳入我们的模型,以帮助我们更好地对新闻进行分类。此外,我们提出了一种有效的标记技术来解决标签短缺问题。在真实世界数据上的实验结果表明,我们的模型能够在假新闻传播后的几分钟内(早期检测)以比基线更高的准确率检测到假新闻。