National Engineering Laboratory on Interconnection Technology for Next Generation Internet, Beijing Jiaotong University, Beijing, China.
Math Biosci Eng. 2022 Jan;19(2):1280-1303. doi: 10.3934/mbe.2022059. Epub 2021 Dec 2.
Network security has become considerably essential because of the expansion of internet of things (IoT) devices. One of the greatest hazards of today's networks is distributed denial of service (DDoS) attacks, which could destroy critical network services. Recent numerous IoT devices are unsuspectingly attacked by DDoS. To securely manage IoT equipment, researchers have introduced software-defined networks (SDN). Therefore, we propose a DDoS attack detection scheme to secure the real-time in the software-defined the internet of things (SD-IoT) environment. In this article, we utilize improved firefly algorithm to optimize the convolutional neural network (CNN), to provide detection for DDoS attacks in our proposed SD-IoT framework. Our results demonstrate that our scheme can achieve higher than 99% DDoS behavior and benign traffic detection accuracy.
由于物联网 (IoT) 设备的扩展,网络安全变得非常重要。当今网络的最大威胁之一是分布式拒绝服务 (DDoS) 攻击,它可能会破坏关键的网络服务。最近,许多物联网设备都在不知不觉中受到 DDoS 的攻击。为了安全地管理物联网设备,研究人员引入了软件定义网络 (SDN)。因此,我们提出了一种 DDoS 攻击检测方案,以确保软件定义物联网 (SD-IoT) 环境中的实时安全性。在本文中,我们利用改进的萤火虫算法优化卷积神经网络 (CNN),为我们提出的 SD-IoT 框架中的 DDoS 攻击提供检测。我们的结果表明,我们的方案可以实现高于 99%的 DDoS 行为和良性流量检测准确率。