Division of Public Health, Osaka Institute of Public Health, Osaka, Japan.
School of Public Health, Kyoto University, Kyoto, Japan.
Math Biosci Eng. 2022 Jan;19(2):2043-2055. doi: 10.3934/mbe.2022096. Epub 2021 Dec 27.
Forecasting future epidemics helps inform policy decisions regarding interventions. During the early coronavirus disease 2019 epidemic period in January-February 2020, limited information was available, and it was too challenging to build detailed mechanistic models reflecting population behavior. This study compared the performance of phenomenological and mechanistic models for forecasting epidemics. For the former, we employed the Richards model and the approximate solution of the susceptible-infected-recovered (SIR) model. For the latter, we examined the exponential growth (with lockdown) model and SIR model with lockdown. The phenomenological models yielded higher root mean square error (RMSE) values than the mechanistic models. When using the numbers from reported data for February 1 and 5, the Richards model had the highest RMSE, whereas when using the February 9 data, the SIR approximation model was the highest. The exponential model with a lockdown effect had the lowest RMSE, except when using the February 9 data. Once interventions or other factors that influence transmission patterns are identified, they should be additionally taken into account to improve forecasting.
预测未来的疫情有助于为干预措施提供政策决策依据。在 2020 年 1 月至 2 月的新冠肺炎疫情早期,可获得的信息有限,构建反映人口行为的详细机械模型极具挑战性。本研究比较了用于预测疫情的现象学模型和机械模型的性能。对于前者,我们采用了 Richards 模型和易感-感染-恢复(SIR)模型的近似解。对于后者,我们研究了带封锁的指数增长模型和带封锁的 SIR 模型。现象学模型的均方根误差(RMSE)值高于机械模型。当使用 2 月 1 日和 5 日报告数据时,Richards 模型的 RMSE 最高,而当使用 2 月 9 日的数据时,SIR 近似模型的 RMSE 最高。带封锁效应的指数模型的 RMSE 最低,但不包括使用 2 月 9 日的数据。一旦确定了影响传播模式的干预措施或其他因素,就应该将其纳入预测模型以提高预测效果。