Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy.
URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
Aging Cell. 2022 Mar;21(3):e13557. doi: 10.1111/acel.13557. Epub 2022 Feb 11.
Senescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age-related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First-degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear. In previous methylome comparison in APC from FDR and individuals with no diabetes familiarity (CTRL), ZMAT3 emerged as one of the top-ranked senescence-related genes featuring hypomethylation in FDR and associated with T2D risk. Here, we investigated whether and how DNA methylation changes at ZMAT3 promote early APC senescence. APC from FDR individuals revealed increases in multiple senescence markers compared to CTRL. Senescence in these cells was accompanied by ZMAT3 hypomethylation, which caused ZMAT3 upregulation. Demethylation at this gene in CTRL APC led to increased ZMAT3 expression and premature senescence, which were reverted by ZMAT3 siRNA. Furthermore, ZMAT3 overexpression in APC determined senescence and activation of the p53/p21 pathway, as observed in FDR APC. Adipogenesis was also inhibited in ZMAT3-overexpressing APC. In FDR APC, rescue of ZMAT3 methylation through senolytic exposure simultaneously downregulated ZMAT3 expression and improved adipogenesis. Interestingly, in human SAT, aging and T2D were associated with significantly increased expression of both ZMAT3 and the P53 senescence marker. Thus, DNA hypomethylation causes ZMAT3 upregulation in FDR APC accompanied by acquisition of the senescence phenotype and impaired adipogenesis, which may contribute to FDR predisposition for T2D.
脂肪前体细胞(APC)衰老会损害脂肪生成,导致与年龄相关的皮下脂肪组织(SAT)功能障碍,并增加 2 型糖尿病(T2D)的风险。T2D 个体的一级亲属(FDR)表现出脂肪生成受限,这反映了 APC 衰老在生命早期的有害影响,使 FDR 更容易患 T2D。表观遗传学可能促成了这些异常,但潜在机制仍不清楚。在以前对来自 FDR 和无糖尿病家族史个体(CTRL)的 APC 进行的甲基化组比较中,ZMAT3 作为排名最高的与衰老相关的基因之一脱颖而出,其在 FDR 中表现出低甲基化,并与 T2D 风险相关。在这里,我们研究了 ZMAT3 上的 DNA 甲基化变化是否以及如何促进早期 APC 衰老。与 CTRL 相比,FDR 个体的 APC 中多个衰老标志物增加。这些细胞中的衰老伴随着 ZMAT3 低甲基化,导致 ZMAT3 上调。CTRL APC 中该基因的去甲基化导致 ZMAT3 表达增加和过早衰老,ZMAT3 siRNA 可逆转这些现象。此外,ZMAT3 在 APC 中的过表达决定了衰老和 p53/p21 途径的激活,这与 FDR APC 中观察到的情况一样。ZMAT3 过表达也抑制了 APC 的脂肪生成。在 FDR APC 中,通过使用 senolytic 恢复 ZMAT3 甲基化可同时下调 ZMAT3 表达并改善脂肪生成。有趣的是,在人类 SAT 中,衰老和 T2D 与 ZMAT3 和 P53 衰老标志物的表达显著增加有关。因此,FDR APC 中的 DNA 低甲基化导致 ZMAT3 上调,同时获得衰老表型和受损的脂肪生成,这可能导致 FDR 易患 T2D。