Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia.
Biological Psychology and Neuroergonomics, Technische Universitaet Berlin, Berlin, Germany.
J Neural Eng. 2022 Feb 28;19(1). doi: 10.1088/1741-2552/ac542c.
Electroencephalography (EEG) is a non-invasive technique used to record cortical neurons' electrical activity using electrodes placed on the scalp. It has become a promising avenue for research beyond state-of-the-art EEG research that is conducted under static conditions. EEG signals are always contaminated by artifacts and other physiological signals. Artifact contamination increases with the intensity of movement.In the last decade (since 2010), researchers have started to implement EEG measurements in dynamic setups to increase the overall ecological validity of the studies. Many different methods are used to remove non-brain activity from the EEG signal, and there are no clear guidelines on which method should be used in dynamic setups and for specific movement intensities.Currently, the most common methods for removing artifacts in movement studies are methods based on independent component analysis. However, the choice of method for artifact removal depends on the type and intensity of movement, which affects the characteristics of the artifacts and the EEG parameters of interest. When dealing with EEG under non-static conditions, special care must be taken already in the designing period of an experiment. Software and hardware solutions must be combined to achieve sufficient removal of unwanted signals from EEG measurements.We have provided recommendations for the use of each method depending on the intensity of the movement and highlighted the advantages and disadvantages of the methods. However, due to the current gap in the literature, further development and evaluation of methods for artifact removal in EEG data during locomotion is needed.
脑电图 (EEG) 是一种非侵入性技术,通过放置在头皮上的电极记录皮质神经元的电活动。它已经成为一种很有前途的研究途径,可以超越在静态条件下进行的最先进的 EEG 研究。EEG 信号总是受到伪迹和其他生理信号的污染。伪迹污染随着运动强度的增加而增加。在过去的十年里(自 2010 年以来),研究人员开始在动态设置中实施 EEG 测量,以提高研究的整体生态有效性。许多不同的方法被用来从 EEG 信号中去除非脑活动,并且对于在动态设置中使用哪种方法以及对于特定的运动强度,没有明确的指导方针。目前,运动研究中去除伪迹最常用的方法是基于独立成分分析的方法。然而,去除伪迹的方法选择取决于运动的类型和强度,这会影响伪迹的特征和感兴趣的 EEG 参数。当处理非静态条件下的 EEG 时,在实验的设计阶段就必须特别注意。必须结合软件和硬件解决方案,以从 EEG 测量中充分去除不需要的信号。我们根据运动强度提供了每种方法的使用建议,并强调了这些方法的优缺点。然而,由于目前文献中的差距,需要进一步开发和评估在运动过程中去除 EEG 数据中伪迹的方法。