Suppr超能文献

颅内 EEG 揭示杏仁核、眶额皮质和海马体在奖励和损失编码中的综合作用。

Integrated Amygdala, Orbitofrontal and Hippocampal Contributions to Reward and Loss Coding Revealed with Human Intracranial EEG.

机构信息

Department of Psychiatry, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.

Department of Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 200025.

出版信息

J Neurosci. 2022 Mar 30;42(13):2756-2771. doi: 10.1523/JNEUROSCI.1717-21.2022. Epub 2022 Feb 11.

Abstract

Neurophysiological work in primates and rodents have shown the amygdala plays a central role in reward processing through connectivity with the orbitofrontal cortex (OFC) and hippocampus. However, understanding the role of oscillations in each region and their connectivity in different stages of reward processing in humans has been hampered by limitations with noninvasive methods such as poor spatial and temporal resolution. To overcome these limitations, we recorded local field potentials (LFPs) directly from the amygdala, OFC and hippocampus simultaneously in human male and female epilepsy patients performing a monetary incentive delay (MID) task. This allowed us to dissociate electrophysiological activity and connectivity patterns related to the anticipation and receipt of rewards and losses in real time. Anticipation of reward increased high-frequency gamma (HFG; 60-250 Hz) activity in the hippocampus and theta band (4-8 Hz) synchronization between amygdala and OFC, suggesting roles in memory and motivation. During receipt, HFG in the amygdala was involved in outcome value coding, the OFC cue context-specific outcome value comparison and the hippocampus reward coding. Receipt of loss decreased amygdala-hippocampus theta and increased amygdala-OFC HFG amplitude coupling which coincided with subsequent adjustments in behavior. Increased HFG synchronization between the amygdala and hippocampus during reward receipt suggested encoding of reward information into memory for reinstatement during anticipation. These findings extend what is known about the primate brain to humans, showing key spectrotemporal coding and communication dynamics for reward and punishment related processes which could serve as more precise targets for neuromodulation to establish causality and potential therapeutic applications. Dysfunctional reward processing contributes to many psychiatric disorders. Neurophysiological work in primates has shown the amygdala, orbitofrontal cortex (OFC), and hippocampus play a synergistic role in reward processing. However, because of limitations with noninvasive imaging, it is unclear whether the same interactions occur in humans and what oscillatory mechanisms underpin them. We addressed this issue by recording local field potentials (LFPs) from all three regions in human epilepsy patients during monetary reward processing. There was increased amygdala-OFC high-frequency coupling when losing money which coincided with subsequent adjustments in behavior. In contrast, increased amygdala-hippocampus high-frequency phase-locking suggested a role in reward memory. The findings highlight amygdala networks for reward and punishment processes that could act as more precise neuromodulation targets to treat psychiatric disorders.

摘要

灵长类动物和啮齿动物的神经生理学研究表明,杏仁核通过与眶额皮层(OFC)和海马体的连接,在奖励处理中发挥核心作用。然而,理解在人类奖励处理的不同阶段中,每个区域的振荡及其连接的作用一直受到非侵入性方法的限制,例如空间和时间分辨率差。为了克服这些限制,我们在进行货币奖励延迟(MID)任务时,直接从人类男性和女性癫痫患者的杏仁核、OFC 和海马体同时记录局部场电位(LFPs)。这使我们能够实时分离与奖励和损失的预期和接收相关的电生理活动和连接模式。奖励的预期增加了海马体中的高频伽马(HFG;60-250 Hz)活动和杏仁核与 OFC 之间的θ波段(4-8 Hz)同步,表明在记忆和动机中发挥作用。在接收过程中,杏仁核中的 HFG 参与了结果值编码、OFC 线索上下文特定结果值比较以及海马体奖励编码。损失的接收减少了杏仁核-海马体的θ和增加了杏仁核-OFC 的 HFG 幅度耦合,这与随后的行为调整相吻合。在奖励接收期间,杏仁核和海马体之间的 HFG 同步增加表明,将奖励信息编码为记忆,以便在预期期间恢复。这些发现将灵长类动物大脑中的知识扩展到人类,显示了与奖励和惩罚相关过程的关键光谱时空编码和通信动态,这可以作为神经调节的更精确目标,以建立因果关系和潜在的治疗应用。奖励处理功能障碍导致许多精神疾病。灵长类动物的神经生理学研究表明,杏仁核、眶额皮层(OFC)和海马体在奖励处理中协同发挥作用。然而,由于非侵入性成像的限制,尚不清楚在人类中是否存在相同的相互作用,以及支持它们的振荡机制是什么。我们通过在人类癫痫患者进行货币奖励处理期间从所有三个区域记录局部场电位(LFPs)来解决这个问题。当失去金钱时,杏仁核-OFC 高频耦合增加,这与随后的行为调整相吻合。相比之下,增加的杏仁核-海马体高频相位锁定表明其在奖励记忆中发挥作用。这些发现突出了杏仁核网络在奖励和惩罚过程中的作用,这些过程可以作为更精确的神经调节目标来治疗精神疾病。

相似文献

1
Integrated Amygdala, Orbitofrontal and Hippocampal Contributions to Reward and Loss Coding Revealed with Human Intracranial EEG.
J Neurosci. 2022 Mar 30;42(13):2756-2771. doi: 10.1523/JNEUROSCI.1717-21.2022. Epub 2022 Feb 11.
2
Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings.
Nat Commun. 2024 Nov 4;15(1):9518. doi: 10.1038/s41467-024-53521-w.
3
Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations.
J Neurosci. 2017 Aug 30;37(35):8374-8384. doi: 10.1523/JNEUROSCI.0486-17.2017. Epub 2017 Jul 25.
4
Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.
J Neurosci. 2017 Feb 22;37(8):2186-2202. doi: 10.1523/JNEUROSCI.0933-16.2017. Epub 2017 Jan 25.
6
Dynamic coding of goal-directed paths by orbital prefrontal cortex.
J Neurosci. 2011 Apr 20;31(16):5989-6000. doi: 10.1523/JNEUROSCI.5436-10.2011.
9
The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.
Brain. 2016 Apr;139(Pt 4):1295-309. doi: 10.1093/brain/awv409. Epub 2016 Jan 25.

引用本文的文献

1
Structural brain differences in school-aged children who are HIV-exposed uninfected.
BMC Med. 2025 Aug 26;23(1):496. doi: 10.1186/s12916-025-04332-3.
2
Reward recalibrates rule representations in human amygdala and hippocampus intracranial recordings.
Nat Commun. 2024 Nov 4;15(1):9518. doi: 10.1038/s41467-024-53521-w.
3
Subthalamic stimulation causally modulates human voluntary decision-making to stay or go.
NPJ Parkinsons Dis. 2024 Nov 2;10(1):210. doi: 10.1038/s41531-024-00807-x.
4
Representation of Anticipated Rewards and Punishments in the Human Brain.
Annu Rev Psychol. 2025 Jan;76(1):197-226. doi: 10.1146/annurev-psych-022324-042614. Epub 2024 Dec 3.
5
Decision-making shapes dynamic inter-areal communication within macaque ventral frontal cortex.
Curr Biol. 2024 Oct 7;34(19):4526-4538.e5. doi: 10.1016/j.cub.2024.08.034. Epub 2024 Sep 17.
7
Beta and theta oscillations track effort and previous reward in the human basal ganglia and prefrontal cortex during decision making.
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2322869121. doi: 10.1073/pnas.2322869121. Epub 2024 Jul 24.
8
Intracranial EEG signals disentangle multi-areal neural dynamics of vicarious pain perception.
Nat Commun. 2024 Jun 18;15(1):5203. doi: 10.1038/s41467-024-49541-1.
9
More widespread and rigid neuronal representation of reward expectation underlies impulsive choices.
bioRxiv. 2024 Apr 12:2024.04.11.588637. doi: 10.1101/2024.04.11.588637.

本文引用的文献

1
Prefrontal cortex interactions with the amygdala in primates.
Neuropsychopharmacology. 2022 Jan;47(1):163-179. doi: 10.1038/s41386-021-01128-w. Epub 2021 Aug 26.
3
Four core properties of the human brain valuation system demonstrated in intracranial signals.
Nat Neurosci. 2020 May;23(5):664-675. doi: 10.1038/s41593-020-0615-9. Epub 2020 Apr 13.
4
Closed-Loop Theta Stimulation in the Orbitofrontal Cortex Prevents Reward-Based Learning.
Neuron. 2020 May 6;106(3):537-547.e4. doi: 10.1016/j.neuron.2020.02.003. Epub 2020 Mar 10.
5
Dissociated neuronal phase- and amplitude-coupling patterns in the human brain.
Neuroimage. 2020 Apr 1;209:116538. doi: 10.1016/j.neuroimage.2020.116538. Epub 2020 Jan 11.
6
Neuronal Activity in the Primate Amygdala during Economic Choice.
J Neurosci. 2020 Feb 5;40(6):1286-1301. doi: 10.1523/JNEUROSCI.0961-19.2019. Epub 2019 Dec 23.
7
Multiplexing of Theta and Alpha Rhythms in the Amygdala-Hippocampal Circuit Supports Pattern Separation of Emotional Information.
Neuron. 2019 May 22;102(4):887-898.e5. doi: 10.1016/j.neuron.2019.03.025. Epub 2019 Apr 9.
8
Reward behaviour is regulated by the strength of hippocampus-nucleus accumbens synapses.
Nature. 2018 Dec;564(7735):258-262. doi: 10.1038/s41586-018-0740-8. Epub 2018 Nov 26.
9
Encoding of Multiple Reward-Related Computations in Transient and Sustained High-Frequency Activity in Human OFC.
Curr Biol. 2018 Sep 24;28(18):2889-2899.e3. doi: 10.1016/j.cub.2018.07.045. Epub 2018 Sep 13.
10
A Dedicated Population for Reward Coding in the Hippocampus.
Neuron. 2018 Jul 11;99(1):179-193.e7. doi: 10.1016/j.neuron.2018.06.008. Epub 2018 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验