Institute of Neurobiochemistry, Ulm University, Ulm, 89081, Germany.
Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, Günzburg, 89312, Germany.
J Neurosci. 2022 Mar 23;42(12):2474-2491. doi: 10.1523/JNEUROSCI.1305-21.2022. Epub 2022 Feb 11.
In postmitotic neurons, several tumor suppressor genes (TSGs), including p53, Rb, and PTEN, modulate the axon regeneration success after injury. Particularly, PTEN inhibition is a key driver of successful CNS axon regeneration after optic nerve or spinal cord injury. In contrast, in peripheral neurons, TSG influence in neuronal morphology, physiology, and pathology has not been investigated to the same depth. In this study, we conditionally deleted PTEN from mouse facial motoneurons ( ) and analyzed neuronal responses with or without peripheral facial nerve injury in male and female mice. In uninjured motoneurons, PTEN loss induced somatic, axonal, and nerve hypertrophy, synaptic terminal enlargement and reduction in physiological whisker movement. Despite these morphologic and physiological changes, PTEN deletion positively regulated facial nerve regeneration and recovery of whisker movement after nerve injury. Regenerating PTEN-deficient motoneurons upregulated P-CREB and a signaling pathway involving P-Akt, P-PRAS40, P-mTOR, and P-4EBP1. In aged mice (12 months), PTEN deletion induced hair loss and facial hyperplasia of the epidermis. This suggests a time window in younger mice with PTEN loss stimulating axon growth after injury, however, at the risk of hyperplasia formation at later time points in the old animal. Overall, our data highlight a dual TSG function with PTEN loss impairing physiological neuron function but furthermore underscoring the positive effects of PTEN ablation in axon regeneration also for the PNS. Tumor suppressor genes (TSGs) restrict cell proliferation and growth. TSG inhibition, including p53 and PTEN, stimulates axon regeneration after CNS injury. In contrast, in PNS axon regeneration, TSGs have not been analyzed in great depth. Herein we show enhanced peripheral axon regeneration after PTEN deletion from facial motoneurons. This invokes a signaling cascade with novel PTEN partners, including CREB and PRAS40. In adult mice, PTEN loss induces hyperplasia of the skin epidermis, suggesting detrimental consequences when reaching adulthood in contrast to a beneficial TSG role for regeneration in young adult mice. Thus, our data highlight the double-edged sword nature of interfering with TSG function.
在后有丝分裂神经元中,包括 p53、Rb 和 PTEN 在内的几个肿瘤抑制基因 (TSG) 可调节损伤后轴突的再生成功。特别是,PTEN 抑制是视神经或脊髓损伤后中枢神经系统轴突再生成功的关键驱动因素。相比之下,在周围神经元中,TSG 对神经元形态、生理学和病理学的影响尚未进行同样深入的研究。在这项研究中,我们条件性地从小鼠面部运动神经元中敲除了 PTEN,并分析了雄性和雌性小鼠中有无周围面神经损伤时神经元的反应。在未受伤的运动神经元中,PTEN 缺失诱导了体细胞、轴突和神经肥大、突触末端增大以及生理胡须运动减少。尽管存在这些形态和生理变化,但 PTEN 缺失正向调节面神经再生和神经损伤后胡须运动的恢复。再生的缺乏 PTEN 的运动神经元上调了 P-CREB 以及涉及 P-Akt、P-PRAS40、P-mTOR 和 P-4EBP1 的信号通路。在老年小鼠(12 个月)中,PTEN 缺失导致毛发脱落和表皮的面部过度增生。这表明在年轻小鼠中存在一个时间窗口,在该窗口中,PTEN 缺失会在受伤后刺激轴突生长,但在老年动物的后期时间点,存在过度增生形成的风险。总的来说,我们的数据突出了 TSG 具有双重功能,PTEN 缺失会损害神经元的生理功能,但进一步强调了 PTEN 缺失在周围神经轴突再生中的积极作用。肿瘤抑制基因(TSG)限制细胞增殖和生长。TSG 抑制,包括 p53 和 PTEN,可刺激中枢神经系统损伤后的轴突再生。相比之下,在周围神经轴突再生中,TSG 尚未进行深入分析。在此,我们显示从面部运动神经元中敲除 PTEN 后可增强周围轴突再生。这引发了包括 CREB 和 PRAS40 在内的新型 PTEN 伙伴的信号级联。在成年小鼠中,PTEN 缺失会导致皮肤表皮过度增生,这表明在成年时会产生有害的后果,而在年轻成年小鼠中,TSG 对再生具有有益作用。因此,我们的数据突出了干扰 TSG 功能的双刃剑性质。