Azzam Ahmed M, Shenashen Mohamed A, Selim Mohamed S, Mostafa Bayaumy, Tawfik Ahmed, El-Safty Sherif A
National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba-shi 305-0047, Ibaraki-ken, Japan.
Environmental Research Department, Theodor Bilharz Research Institute (TBRI), Imbaba, Giza 12411, Egypt.
Nanomaterials (Basel). 2022 Feb 1;12(3):510. doi: 10.3390/nano12030510.
Bacterial pathogens pose high threat to public health worldwide. Different types of nanomaterials have been synthesized for the rapid detection and elimination of pathogens from environmental samples. However, the selectivity of these materials remains challenging, because target bacterial pathogens commonly exist in complex samples at ultralow concentrations. In this study, we fabricated novel furry amino magnetic poly-L-ornithine (PLO)/amine-poly(ethylene glycol) (PEG)-COOH/vancomycin (VCM) (AM-PPV) nanospheres with high-loading VCM for vehicle tracking and the highly efficient capture of pathogens. The magnetic core was coated with organosilica and functionalized with cilia. The core consisted of PEG/PLO loaded with VCM conjugated to Gram-positive bacterial cell membranes, forming hydrogen bonds with terminal peptides. The characterization of AM-PPV nanospheres revealed an average particle size of 56 nm. The field-emission scanning electron microscopy (FE-SEM) micrographs showed well-controlled spherical AM-PPV nanospheres with an average size of 56 nm. The nanospheres were relatively rough and contained an additional 12.4 nm hydrodynamic layer of PLO/PEG/VCM, which provided additional stability in the suspension. The furry AM-PPV nanospheres exhibited a significant capture efficiency (>90%) and a high selectivity for detecting (employed as a model for Gram-positive bacteria) within 15 min, even in the presence of other biocompatible pathogens. Moreover, AM-PPV nanospheres rapidly and accurately detected at levels less than 10 CFU/mL. The furry nano-design can potentially satisfy the increasing demand for the rapid and sensitive detection of pathogens in clinical and environmental samples.
细菌病原体对全球公共卫生构成了严重威胁。人们已经合成了不同类型的纳米材料,用于从环境样本中快速检测和消除病原体。然而,这些材料的选择性仍然具有挑战性,因为目标细菌病原体通常以超低浓度存在于复杂样本中。在本研究中,我们制备了新型的毛茸茸的氨基磁性聚-L-鸟氨酸(PLO)/胺基聚乙二醇(PEG)-COOH/万古霉素(VCM)(AM-PPV)纳米球,其负载高剂量的VCM,用于载体追踪和高效捕获病原体。磁性核心包覆有有机硅并通过纤毛进行功能化。核心由负载VCM的PEG/PLO组成,其与革兰氏阳性细菌细胞膜共轭,与末端肽形成氢键。AM-PPV纳米球的表征显示平均粒径为56nm。场发射扫描电子显微镜(FE-SEM)显微照片显示了尺寸控制良好的球形AM-PPV纳米球,平均尺寸为56nm。纳米球相对粗糙,并且包含额外的12.4nm的PLO/PEG/VCM流体动力学层,这在悬浮液中提供了额外的稳定性。毛茸茸的AM-PPV纳米球在15分钟内表现出显著的捕获效率(>90%),并且对检测金黄色葡萄球菌(用作革兰氏阳性菌的模型)具有高选择性,即使存在其他生物相容性病原体。此外,AM-PPV纳米球能够快速准确地检测到浓度低于10 CFU/mL 的金黄色葡萄球菌。这种毛茸茸的纳米设计有可能满足临床和环境样本中对病原体快速灵敏检测日益增长的需求。