Suppr超能文献

荧光成像中相空间的线性组合特性。

Linear Combination Properties of the Phasor Space in Fluorescence Imaging.

机构信息

Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.

Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay.

出版信息

Sensors (Basel). 2022 Jan 27;22(3):999. doi: 10.3390/s22030999.

Abstract

The phasor approach to fluorescence lifetime imaging, and more recently hyperspectral fluorescence imaging, has increased the use of these techniques, and improved the ease and intuitiveness of the data analysis. The fit-free nature of the phasor plots increases the speed of the analysis and reduces the dimensionality, optimization of data handling and storage. The reciprocity principle between the real and imaginary space-where the phasor and the pixel that the phasor originated from are linked and can be converted from one another-has helped the expansion of this method. The phasor coordinates calculated from a pixel, where multiple fluorescent species are present, depends on the phasor positions of those components. The relative positions are governed by the linear combination properties of the phasor space. According to this principle, the phasor position of a pixel with multiple components lies inside the polygon whose vertices are occupied by the phasor positions of these individual components and the distance between the image phasor to any of the vertices is inversely proportional to the fractional intensity contribution of that component to the total fluorescence from that image pixel. The higher the fractional intensity contribution of a vertex, the closer is the resultant phasor. The linear additivity in the phasor space can be exploited to obtain the fractional intensity contribution from multiple species and quantify their contribution. This review details the various mathematical models that can be used to obtain two/three/four components from phasor space with known phasor signatures and then how to obtain both the fractional intensities and phasor positions without any prior knowledge of either, assuming they are mono-exponential in nature. We note that other than for blind components, there are no restrictions on the type of the decay or their phasor positions for linear combinations to be valid-and they are applicable to complicated fluorescence lifetime decays from components with intensity decays described by multi-exponentials.

摘要

荧光寿命成像的相量方法,以及最近的高光谱荧光成像,增加了这些技术的使用,并提高了数据分析的易用性和直观性。相量图的无拟合性质提高了分析速度,并降低了数据处理和存储的维度、优化。相量和相量起源的像素之间的实空间和虚空间之间的互易原理——可以相互转换——帮助了这种方法的扩展。从存在多个荧光物质的像素计算出的相量坐标取决于这些成分的相量位置。相对位置受相量空间的线性组合特性控制。根据这一原理,具有多个成分的像素的相量位置位于由这些单个成分的相量位置占据的多边形内,并且图像相量与任何顶点之间的距离与该成分对来自该图像像素的总荧光的分数强度贡献成反比。顶点的分数强度贡献越高,得到的相量就越接近。相量空间中的线性可加性可用于获得来自多个物种的分数强度贡献并量化它们的贡献。本综述详细介绍了各种数学模型,这些模型可用于从具有已知相量特征的相量空间中获得两个/三个/四个成分,然后如何在没有任何先验知识的情况下获得分数强度和相量位置,假设它们在本质上是单指数的。我们注意到,除了盲成分之外,对于线性组合有效的衰减类型或它们的相量位置没有任何限制,并且它们适用于具有由多指数描述的强度衰减的成分的复杂荧光寿命衰减。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef34/8840623/8a8226439af8/sensors-22-00999-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验