Suppr超能文献

使用电子健康解决方案对心力衰竭患者进行院后随访:限制系统性评价。

Posthospitalization Follow-Up of Patients With Heart Failure Using eHealth Solutions: Restricted Systematic Review.

机构信息

Department of Quality and Health Technologies, University of Stavanger, Stavanger, Norway.

Research Group for Nursing and Health Sciences, Stavanger University Hospital, Stavanger, Norway.

出版信息

J Med Internet Res. 2022 Feb 15;24(2):e32946. doi: 10.2196/32946.

Abstract

BACKGROUND

Heart failure (HF) is a clinical syndrome with high incidence rates, a substantial symptom and treatment burden, and a significant risk of readmission within 30 days after hospitalization. The COVID-19 pandemic has revealed the significance of using eHealth interventions to follow up on the care needs of patients with HF to support self-care, increase quality of life (QoL), and reduce readmission rates during the transition between hospital and home.

OBJECTIVE

The aims of this review are to summarize research on the content and delivery modes of HF posthospitalization eHealth interventions, explore patient adherence to the interventions, and examine the effects on the patient outcomes of self-care, QoL, and readmissions.

METHODS

A restricted systematic review study design was used. Literature searches and reviews followed the (PRISMA-S) Preferred Reporting Items for Systematic Reviews and Meta-Analyses literature search extension checklist, and the CINAHL, MEDLINE, Embase, and Cochrane Library databases were searched for studies published between 2015 and 2020. The review process involved 3 groups of researchers working in pairs. The Mixed Methods Appraisal Tool was used to assess the included studies' methodological quality. A thematic analysis method was used to analyze data extracted from the studies.

RESULTS

A total of 18 studies were examined in this review. The studies were published between 2015 and 2019, with 56% (10/18) of them published in the United States. Of the 18 studies, 16 (89%) were randomized controlled trials, and 14 (78%) recruited patients upon hospital discharge to eHealth interventions lasting from 14 days to 12 months. The studies involved structured telephone calls, interactive voice response, and telemonitoring and included elements of patient education, counseling, social and emotional support, and self-monitoring of symptoms and vital signs. Of the 18 studies, 11 (61%) provided information on patient adherence, and the adherence levels were 72%-99%. When used for posthospitalization follow-up of patients with HF, eHealth interventions can positively affect QoL, whereas its impact is less evident for self-care and readmissions.

CONCLUSIONS

This review suggests that patients with HF should receive prompt follow-up after hospitalization and eHealth interventions have the potential to improve these patients' QoL. Patient adherence in eHealth follow-up trials shows promise for successful future interventions and adherence research. Further studies are warranted to examine the effects of eHealth interventions on self-care and readmissions among patients with HF.

摘要

背景

心力衰竭(HF)是一种发病率高、症状和治疗负担重、住院后 30 天内再入院风险显著的临床综合征。COVID-19 大流行凸显了使用电子健康干预措施来满足 HF 患者护理需求的重要性,以支持自我护理、提高生活质量(QoL)并降低住院和家庭过渡期间的再入院率。

目的

本综述的目的是总结 HF 出院后电子健康干预措施的内容和交付模式研究,探讨患者对干预措施的依从性,并研究对自我护理、QoL 和再入院率等患者结局的影响。

方法

采用受限系统综述研究设计。文献检索和综述遵循(PRISMA-S)系统评价和荟萃分析文献检索扩展清单,检索了 2015 年至 2020 年期间发表的 CINAHL、MEDLINE、Embase 和 Cochrane 图书馆数据库中的研究。该综述过程涉及 3 组配对工作的研究人员。使用混合方法评估工具评估纳入研究的方法学质量。使用主题分析方法对从研究中提取的数据进行分析。

结果

本综述共检查了 18 项研究。这些研究发表于 2015 年至 2019 年之间,其中 56%(10/18)发表于美国。18 项研究中,16 项(89%)为随机对照试验,14 项(78%)在出院后招募患者参与电子健康干预,持续时间从 14 天到 12 个月不等。这些研究涉及结构化电话、交互式语音应答和远程监测,并包含患者教育、咨询、社会和情感支持以及症状和生命体征自我监测等内容。18 项研究中有 11 项(61%)提供了关于患者依从性的信息,依从水平为 72%-99%。电子健康干预措施用于 HF 患者出院后的随访,可以积极影响 QoL,而对自我护理和再入院的影响则不明显。

结论

本综述表明,HF 患者应在住院后立即得到随访,电子健康干预措施有可能改善这些患者的 QoL。电子健康随访试验中的患者依从性为未来成功的干预措施和依从性研究提供了希望。有必要进一步研究电子健康干预措施对 HF 患者自我护理和再入院的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d81/8889479/823b7787e917/jmir_v24i2e32946_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验