Suppr超能文献

电压门控缝隙连接信号的动态范围由诱导的膜电位去极化维持。

The dynamic range of voltage-dependent gap junction signaling is maintained by -induced membrane potential depolarization.

机构信息

School of Biological Sciences, Illinois State University, Normal, Illinois.

Department of Physics, Illinois State University, Normal, Illinois.

出版信息

J Neurophysiol. 2022 Mar 1;127(3):776-790. doi: 10.1152/jn.00545.2021. Epub 2022 Feb 16.

Abstract

Like their chemical counterparts, electrical synapses show complex dynamics such as rectification and voltage dependence that interact with other electrical processes in neurons. The consequences arising from these interactions for the electrical behavior of the synapse, and the dynamics they create, remain largely unexplored. Using a voltage-dependent electrical synapse between a descending modulatory projection neuron (MCN1) and a motor neuron (LG) in the crustacean stomatogastric ganglion, we find that the influence of the hyperpolarization-activated inward current () is critical to the function of the electrical synapse. When we blocked with CsCl, the apparent voltage dependence of the electrical synapse shifted by 18.7 mV to more hyperpolarized voltages, placing the dynamic range of the electrical synapse outside of the range of voltages used by the LG motor neuron (-60.2 mV to -44.9 mV). With dual electrode current- and voltage-clamp recordings, we demonstrate that this voltage shift is not due to a change in the properties of the gap junction itself, but is a result of a sustained effect of on the presynaptic MCN1 axon terminal membrane potential. -induced depolarization of the axon terminal membrane potential increased the electrical postsynaptic potentials and currents. With present, the axon terminal resting membrane potential is depolarized, shifting the dynamic range of the electrical synapse toward the functional range of the motor neuron. We thus demonstrate that the function of an electrical synapse is critically influenced by a voltage-dependent ionic current (). Electrical synapses and voltage-gated ionic currents are often studied independently from one another, despite mounting evidence that their interactions can alter synaptic behavior. We show that the hyperpolarization-activated inward ionic current shifts the voltage dependence of electrical synaptic transmission through its depolarizing effect on the membrane potential, enabling it to lie within the functional membrane potential range of a motor neuron. Thus, the electrical synapse's function critically depends on the voltage-gated ionic current.

摘要

与它们的化学对应物一样,电突触表现出复杂的动力学特性,如整流和电压依赖性,这些特性与神经元中的其他电过程相互作用。这些相互作用对突触的电行为及其产生的动力学产生的后果在很大程度上仍未得到探索。我们使用甲壳类动物口胃神经节中下降调制投射神经元(MCN1)和运动神经元(LG)之间的电压依赖性电突触,发现超极化激活内向电流()的影响对于电突触的功能至关重要。当我们用 CsCl 阻断时,电突触的表观电压依赖性向更超极化的电压偏移了 18.7 mV,使电突触的动态范围超出了 LG 运动神经元使用的电压范围(-60.2 mV 至-44.9 mV)。通过双电极电流和电压钳记录,我们证明这种电压偏移不是由于间隙连接本身性质的变化,而是由于持续的对 MCN1 轴突末梢膜电位的影响。诱导的轴突末梢膜电位去极化增加了电突触后电位和电流。存在时,轴突末梢静息膜电位去极化,使电突触的动态范围向运动神经元的功能范围移动。因此,我们证明电压依赖性离子电流()会严重影响电突触的功能。尽管越来越多的证据表明它们的相互作用可以改变突触行为,但电突触和电压门控离子电流通常是相互独立地进行研究的。我们表明,超极化激活内向离子电流通过其对膜电位的去极化作用改变电突触传递的电压依赖性,使其能够位于运动神经元的功能膜电位范围内。因此,电突触的功能严重依赖于电压门控离子电流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39df/8917912/a198e9e7cf57/jn-00545-2021r01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验