Suppr超能文献

用于全脑的单神经元PB级多形态测量

Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains.

作者信息

Jiang Shengdian, Wang Yimin, Liu Lijuan, Ding Liya, Ruan Zongcai, Dong Hong-Wei, Ascoli Giorgio A, Hawrylycz Michael, Zeng Hongkui, Peng Hanchuan

机构信息

SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.

School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China.

出版信息

Neuroinformatics. 2022 Apr;20(2):525-536. doi: 10.1007/s12021-022-09569-4. Epub 2022 Feb 19.

Abstract

Recent advances in brain imaging allow producing large amounts of 3-D volumetric data from which morphometry data is reconstructed and measured. Fine detailed structural morphometry of individual neurons, including somata, dendrites, axons, and synaptic connectivity based on digitally reconstructed neurons, is essential for cataloging neuron types and their connectivity. To produce quality morphometry at large scale, it is highly desirable but extremely challenging to efficiently handle petabyte-scale high-resolution whole brain imaging database. Here, we developed a multi-level method to produce high quality somatic, dendritic, axonal, and potential synaptic morphometry, which was made possible by utilizing necessary petabyte hardware and software platform to optimize both the data and workflow management. Our method also boosts data sharing and remote collaborative validation. We highlight a petabyte application dataset involving 62 whole mouse brains, from which we identified 50,233 somata of individual neurons, profiled the dendrites of 11,322 neurons, reconstructed the full 3-D morphology of 1,050 neurons including their dendrites and full axons, and detected 1.9 million putative synaptic sites derived from axonal boutons. Analysis and simulation of these data indicate the promise of this approach for modern large-scale morphology applications.

摘要

脑成像技术的最新进展使得能够生成大量三维体积数据,从中可以重建和测量形态计量学数据。基于数字重建神经元的单个神经元的精细详细结构形态计量学,包括胞体、树突、轴突和突触连接,对于分类神经元类型及其连接至关重要。为了大规模生成高质量的形态计量学数据,高效处理PB级高分辨率全脑成像数据库是非常理想但极具挑战性的。在这里,我们开发了一种多级方法来生成高质量的胞体、树突、轴突和潜在突触形态计量学数据,这通过利用必要的PB级硬件和软件平台来优化数据和工作流程管理得以实现。我们的方法还促进了数据共享和远程协作验证。我们重点介绍了一个涉及62个完整小鼠脑的PB级应用数据集,从中我们识别出50233个单个神经元的胞体,描绘了11322个神经元的树突,重建了1050个神经元的完整三维形态,包括它们的树突和完整轴突,并检测到190万个源自轴突终扣的假定突触位点。对这些数据的分析和模拟表明了这种方法在现代大规模形态学应用中的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验