Ghosh Sayantan, Varghese Abin, Jawa Himani, Yin Yuefeng, Medhekar Nikhil V, Lodha Saurabh
Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India.
Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
ACS Nano. 2022 Mar 22;16(3):4578-4587. doi: 10.1021/acsnano.1c11110. Epub 2022 Feb 21.
Excellent light-matter interaction and a wide range of thickness-tunable bandgaps in layered vdW materials coupled by the facile fabrication of heterostructures have enabled several avenues for optoelectronic applications. Realization of high photoresponsivity at fast switching speeds is a critical challenge for 2D optoelectronics to enable high-performance photodetection for optical communication. Moving away from conventional type-II heterostructure pn junctions towards a WSe/SnSe type-III configuration, we leverage the steep change in tunneling current along with a light-induced heterointerface band shift to achieve high negative photoresponsivity, while the fast carrier transport under tunneling results in high speed. In addition, the photocurrent can be controllably switched from positive to negative values, with ∼10× enhancement in responsivity, by engineering the band alignment from type-II to type-III using either the drain or the gate bias. This is further reinforced by electric-field dependent interlayer band structure calculations using density functional theory. The high negative responsivity of 2 × 10 A/W and fast response time of ∼1 μs coupled with a polarity-tunable photocurrent can lead to the development of next-generation multifunctional optoelectronic devices.
层状范德华材料中出色的光与物质相互作用以及通过简便制造异质结构实现的广泛厚度可调带隙,为光电子应用开辟了多种途径。在快速开关速度下实现高光响应性是二维光电子学面临的一项关键挑战,其目的是实现用于光通信的高性能光电探测。从传统的II型异质结构pn结转向WSe/SnSe III型结构,我们利用隧穿电流的急剧变化以及光致异质界面能带偏移来实现高负光响应性,而隧穿过程中的快速载流子输运则带来了高速响应。此外,通过使用漏极或栅极偏置将能带排列从II型工程化为III型,光电流可以可控地从正值切换为负值,响应度提高约10倍。使用密度泛函理论进行的电场依赖层间能带结构计算进一步证实了这一点。2×10 A/W的高负响应度、约1 μs的快速响应时间以及极性可调的光电流,有望推动下一代多功能光电子器件的发展。