Stolz Lukas, Hochstädt Sebastian, Röser Stephan, Hansen Michael Ryan, Winter Martin, Kasnatscheew Johannes
Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany.
Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11559-11566. doi: 10.1021/acsami.2c00084. Epub 2022 Feb 22.
Lithium batteries with solid polymer electrolytes (SPEs) and ions are prone to mass transport limitations, that is, concentration polarization, creating a concentration gradient with Li-ion (and counter-anion) depletion toward the respective electrode, as can be electrochemically observed in, for example, symmetric Li||Li cells and confirmed by Sand and diffusion equations. The effect of anions is systematically investigated in this work. Therefore, network-based SPEs are synthesized with either mobile (dual-ion conduction) or immobile anions (single-ion conduction) and proved solvation tests and nuclear magnetic resonance spectroscopy. It is shown that the SPE with anions does not suffer from concentration polarization, thus disagreeing with Sand and diffusion assumptions, consequently suggesting single-ion (Li) transport migration instead. Nevertheless, the practical relevance of single-ion conduction can be debated. Under practical conditions, that is, below the limiting current, the concentration polarization is generally not pronounced with DIC-based electrolytes, rendering the beneficial effect of SIC redundant and DIC a better choice due to better kinetical aspects under these conditions. Also, the observed dendritic Li in both electrolytes questions a relevant impact of mass transport on its formation, at least in SPEs.
具有固体聚合物电解质(SPEs)和离子的锂电池容易出现传质限制,即浓差极化,会形成锂离子(和抗衡阴离子)向各自电极方向耗尽的浓度梯度,例如在对称锂||锂电池中可以通过电化学观察到,并由桑德方程和扩散方程得到证实。在这项工作中,系统地研究了阴离子的影响。因此,合成了基于网络的SPEs,其阴离子具有可移动性(双离子传导)或不可移动性(单离子传导),并通过溶剂化测试和核磁共振光谱进行了验证。结果表明,含有阴离子的SPE不会受到浓差极化的影响,因此与桑德方程和扩散假设不一致,从而表明是单离子(锂)传输迁移。然而,单离子传导的实际相关性仍存在争议。在实际条件下,即在极限电流以下,基于双离子传导(DIC)的电解质通常不会出现明显的浓差极化,这使得单离子传导(SIC)的有益效果变得多余,并且由于在这些条件下动力学方面更好,DIC成为更好的选择。此外,在两种电解质中观察到的锂枝晶也对传质对其形成的相关影响提出了质疑,至少在SPEs中是这样。