IEEE J Biomed Health Inform. 2022 Jul;26(7):3163-3173. doi: 10.1109/JBHI.2022.3153671. Epub 2022 Jul 1.
The spatial correlation among different tissue components is an essential characteristic for diagnosis of breast cancers based on histopathological images. Graph convolutional network (GCN) can effectively capture this spatial feature representation, and has been successfully applied to the histopathological image based computer-aided diagnosis (CAD). However, the current GCN-based approaches need complicated image preprocessing for graph construction. In this work, we propose a novel CAD framework for classification of breast histopathological images, which integrates both convolutional neural network (CNN) and GCN (named CNN-GCN) into a unified framework, where CNN learns high-level features from histopathological images for further adaptive graph construction, and the generated graph is then fed to GCN to learn the spatial features of histopathological images for the classification task. In particular, a novel clique GCN (cGCN) is proposed to learn more effective graph representation, which can arrange both forward and backward connections between any two graph convolution layers. Moreover, a new group graph convolution is further developed to replace the classical graph convolution of each layer in cGCN, so as to reduce redundant information and implicitly select superior fused feature representation. The proposed clique group GCN (cgGCN) is then embedded in the CNN-GCN framework (named CNN-cgGCN) to promote the learned spatial representation for diagnosis of breast cancers. The experimental results on two public breast histopathological image datasets indicate the effectiveness of the proposed CNN-cgGCN with superior performance to all the compared algorithms.
不同组织成分之间的空间相关性是基于组织病理学图像诊断乳腺癌的一个重要特征。图卷积网络(GCN)可以有效地捕捉这种空间特征表示,并已成功应用于基于组织病理学图像的计算机辅助诊断(CAD)。然而,目前基于 GCN 的方法需要复杂的图像预处理来构建图。在这项工作中,我们提出了一种新的 CAD 框架,用于分类乳腺组织病理学图像,该框架将卷积神经网络(CNN)和 GCN (称为 CNN-GCN)集成到一个统一的框架中,其中 CNN 从组织病理学图像中学习高级特征,以进一步自适应地构建图,生成的图然后被馈送到 GCN 中,以学习组织病理学图像的空间特征,用于分类任务。特别是,提出了一种新的团图卷积网络(cGCN)来学习更有效的图表示,可以排列任何两个图卷积层之间的前向和后向连接。此外,进一步开发了新的组图卷积,以替代 cGCN 中每层的经典图卷积,从而减少冗余信息并隐式选择优越的融合特征表示。所提出的团群图卷积网络(cgGCN)被嵌入到 CNN-GCN 框架中(称为 CNN-cgGCN),以促进用于诊断乳腺癌的学习的空间表示。在两个公开的乳腺组织病理学图像数据集上的实验结果表明了所提出的 CNN-cgGCN 的有效性,其性能优于所有比较算法。