Suppr超能文献

青光眼筛查、分割与分类的人工智能方法文献综述

Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification.

作者信息

Camara José, Neto Alexandre, Pires Ivan Miguel, Villasana María Vanessa, Zdravevski Eftim, Cunha António

机构信息

R. Escola Politécnica, Universidade Aberta, 1250-100 Lisboa, Portugal.

Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal.

出版信息

J Imaging. 2022 Jan 20;8(2):19. doi: 10.3390/jimaging8020019.

Abstract

Artificial intelligence techniques are now being applied in different medical solutions ranging from disease screening to activity recognition and computer-aided diagnosis. The combination of computer science methods and medical knowledge facilitates and improves the accuracy of the different processes and tools. Inspired by these advances, this paper performs a literature review focused on state-of-the-art glaucoma screening, segmentation, and classification based on images of the papilla and excavation using deep learning techniques. These techniques have been shown to have high sensitivity and specificity in glaucoma screening based on papilla and excavation images. The automatic segmentation of the contours of the optic disc and the excavation then allows the identification and assessment of the glaucomatous disease's progression. As a result, we verified whether deep learning techniques may be helpful in performing accurate and low-cost measurements related to glaucoma, which may promote patient empowerment and help medical doctors better monitor patients.

摘要

人工智能技术目前正应用于从疾病筛查到活动识别以及计算机辅助诊断等不同的医疗解决方案中。计算机科学方法与医学知识的结合促进并提高了不同流程和工具的准确性。受这些进展的启发,本文进行了一项文献综述,重点关注基于深度学习技术的、利用视乳头和凹陷图像进行的青光眼筛查、分割和分类的最新技术。这些技术已被证明在基于视乳头和凹陷图像的青光眼筛查中具有高灵敏度和特异性。对视盘和凹陷轮廓的自动分割随后能够识别和评估青光眼疾病的进展。因此,我们验证了深度学习技术是否有助于进行与青光眼相关的准确且低成本的测量,这可能会增强患者的自主权,并帮助医生更好地监测患者。

相似文献

4
Optic disc and optic cup segmentation based on anatomy guided cascade network.基于解剖结构引导级联网络的视盘和视杯分割。
Comput Methods Programs Biomed. 2020 Dec;197:105717. doi: 10.1016/j.cmpb.2020.105717. Epub 2020 Aug 27.

引用本文的文献

5
Artificial intelligence and glaucoma: a lucid and comprehensive review.人工智能与青光眼:一篇清晰且全面的综述
Front Med (Lausanne). 2024 Dec 16;11:1423813. doi: 10.3389/fmed.2024.1423813. eCollection 2024.
6
MR Image Fusion-Based Parotid Gland Tumor Detection.基于磁共振图像融合的腮腺肿瘤检测
J Imaging Inform Med. 2025 Jun;38(3):1846-1859. doi: 10.1007/s10278-024-01137-3. Epub 2024 Sep 26.

本文引用的文献

1
Emerging therapies for dry eye disease.干眼病的新兴疗法。
Expert Opin Emerg Drugs. 2021 Dec;26(4):401-413. doi: 10.1080/14728214.2021.2011858. Epub 2021 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验