Suppr超能文献

一种用于增强COVID-19 CT图像分割的多智能体深度强化学习方法。

A Multi-Agent Deep Reinforcement Learning Approach for Enhancement of COVID-19 CT Image Segmentation.

作者信息

Allioui Hanane, Mohammed Mazin Abed, Benameur Narjes, Al-Khateeb Belal, Abdulkareem Karrar Hameed, Garcia-Zapirain Begonya, Damaševičius Robertas, Maskeliūnas Rytis

机构信息

Computer Sciences Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco.

Computer Science Department, College of Computer Science and Information Technology, University of Anbar, Ramadi 31001, Iraq.

出版信息

J Pers Med. 2022 Feb 18;12(2):309. doi: 10.3390/jpm12020309.

Abstract

Currently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary. The use of cooperative agents in mask extraction increases the efficiency of automatic image segmentation. Hence, we introduce a new mask extraction method that is based on multi-agent deep reinforcement learning (DRL) to minimize the long-term manual mask extraction and to enhance medical image segmentation frameworks. A DRL-based method is introduced to deal with mask extraction issues. This new method utilizes a modified version of the Deep Q-Network to enable the mask detector to select masks from the image studied. Based on COVID-19 computed tomography (CT) images, we used DRL mask extraction-based techniques to extract visual features of COVID-19 infected areas and provide an accurate clinical diagnosis while optimizing the pathogenic diagnostic test and saving time. We collected CT images of different cases (normal chest CT, pneumonia, typical viral cases, and cases of COVID-19). Experimental validation achieved a precision of 97.12% with a Dice of 80.81%, a sensitivity of 79.97%, a specificity of 99.48%, a precision of 85.21%, an F1 score of 83.01%, a structural metric of 84.38%, and a mean absolute error of 0.86%. Additionally, the results of the visual segmentation clearly reflected the ground truth. The results reveal the proof of principle for using DRL to extract CT masks for an effective diagnosis of COVID-19.

摘要

目前,大多数掩码提取技术基于卷积神经网络(CNN)。然而,掩码提取技术仍有许多问题需要解决。因此,采用最先进的方法来部署人工智能(AI)技术是必要的。在掩码提取中使用协作智能体可提高自动图像分割的效率。因此,我们引入一种基于多智能体深度强化学习(DRL)的新掩码提取方法,以尽量减少长期的手动掩码提取,并增强医学图像分割框架。引入了一种基于DRL的方法来处理掩码提取问题。这种新方法利用了深度Q网络的改进版本,使掩码检测器能够从所研究的图像中选择掩码。基于新冠肺炎计算机断层扫描(CT)图像,我们使用基于DRL掩码提取的技术来提取新冠肺炎感染区域的视觉特征,并在优化病原诊断测试和节省时间的同时提供准确的临床诊断。我们收集了不同病例(正常胸部CT、肺炎、典型病毒病例和新冠肺炎病例)的CT图像。实验验证的精度为97.12%,Dice系数为80.81%,灵敏度为79.97%,特异性为99.48%,精度为85.21%,F1分数为83.01%,结构度量为84.38%,平均绝对误差为0.86%。此外,视觉分割结果清楚地反映了真实情况。结果揭示了使用DRL提取CT掩码以有效诊断新冠肺炎的原理证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70d8/8880720/9c384864038a/jpm-12-00309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验