Suppr超能文献

多任务主邻域聚合辅助受体酪氨酸激酶相关非小细胞肺癌治疗的多靶向配体亲和力预测。

Assisting Multitargeted Ligand Affinity Prediction of Receptor Tyrosine Kinases Associated Nonsmall Cell Lung Cancer Treatment with Multitasking Principal Neighborhood Aggregation.

机构信息

School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.

Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

出版信息

Molecules. 2022 Feb 11;27(4):1226. doi: 10.3390/molecules27041226.

Abstract

A multitargeted therapeutic approach with hybrid drugs is a promising strategy to enhance anticancer efficiency and overcome drug resistance in nonsmall cell lung cancer (NSCLC) treatment. Estimating affinities of small molecules against targets of interest typically proceeds as a preliminary action for recent drug discovery in the pharmaceutical industry. In this investigation, we employed machine learning models to provide a computationally affordable means for computer-aided screening to accelerate the discovery of potential drug compounds. In particular, we introduced a quantitative structure-activity-relationship (QSAR)-based multitask learning model to facilitate an in silico screening system of multitargeted drug development. Our method combines a recently developed graph-based neural network architecture, principal neighborhood aggregation (PNA), with a descriptor-based deep neural network supporting synergistic utilization of molecular graph and fingerprint features. The model was generated by more than ten-thousands affinity-reported ligands of seven crucial receptor tyrosine kinases in NSCLC from two public data sources. As a result, our multitask model demonstrated better performance than all other benchmark models, as well as achieving satisfying predictive ability regarding applicable QSAR criteria for most tasks within the model's applicability. Since our model could potentially be a screening tool for practical use, we have provided a model implementation platform with a tutorial that is freely accessible hence, advising the first move in a long journey of cancer drug development.

摘要

针对非小细胞肺癌 (NSCLC) 治疗中增强抗癌效率和克服耐药性的问题,采用多靶治疗方法的混合药物是一种很有前途的策略。小分子对目标的亲和力估计通常是制药行业中药物发现的初步步骤。在本研究中,我们使用机器学习模型为计算机辅助筛选提供了一种计算上负担得起的方法,以加速潜在药物化合物的发现。特别是,我们引入了一种基于定量构效关系 (QSAR) 的多任务学习模型,以促进多靶药物开发的计算机筛选系统。我们的方法结合了最近开发的基于图的神经网络架构(主邻聚合(PNA))和基于描述符的深度神经网络,支持分子图和指纹特征的协同利用。该模型是由两个公共数据源中 NSCLC 中七个关键受体酪氨酸激酶的超过一万个亲和力报告配体生成的。结果表明,我们的多任务模型比所有其他基准模型表现更好,并且在模型适用性内的大多数任务的适用 QSAR 标准方面也具有令人满意的预测能力。由于我们的模型可能成为实际应用的筛选工具,因此我们提供了一个带有教程的模型实现平台,该平台是免费提供的,因此为癌症药物开发的漫长旅程提供了一个起点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51a2/8878292/5ce2f49ecd3e/molecules-27-01226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验