Opt Express. 2022 Jan 17;30(2):1422-1441. doi: 10.1364/OE.448250.
Harnessing the power and flexibility of radiolabeled molecules, Cerenkov luminescence tomography (CLT) provides a novel technique for non-invasive visualisation and quantification of viable tumour cells in a living organism. However, owing to the photon scattering effect and the ill-posed inverse problem, CLT still suffers from insufficient spatial resolution and shape recovery in various preclinical applications. In this study, we proposed a total variation constrained graph manifold learning (TV-GML) strategy for achieving accurate spatial location, dual-source resolution, and tumour morphology. TV-GML integrates the isotropic total variation term and dynamic graph Laplacian constraint to make a trade-off between edge preservation and piecewise smooth region reconstruction. Meanwhile, the tetrahedral mesh-Cartesian grid pair method based on the k-nearest neighbour, and the adaptive and composite Barzilai-Borwein method, were proposed to ensure global super linear convergence of the solution of TV-GML. The comparison results of both simulation experiments and in vivo experiments further indicated that TV-GML achieved superior reconstruction performance in terms of location accuracy, dual-source resolution, shape recovery capability, robustness, and in vivo practicability. Significance: We believe that this novel method will be beneficial to the application of CLT for quantitative analysis and morphological observation of various preclinical applications and facilitate the development of the theory of solving inverse problem.
利用放射性标记分子的强大功能和灵活性,切伦科夫发光断层成像(CLT)为在活体中对活肿瘤细胞进行非侵入性可视化和定量提供了一种新的技术。然而,由于光子散射效应和不适定的逆问题,CLT 在各种临床前应用中仍然存在空间分辨率不足和形状恢复困难的问题。在本研究中,我们提出了一种全变分约束图流形学习(TV-GML)策略,用于实现准确的空间定位、双源分辨率和肿瘤形态。TV-GML 结合了各向同性全变分项和动态图拉普拉斯约束,在边缘保持和分段平滑区域重建之间进行折衷。同时,提出了基于 k-最近邻的四面体网格-笛卡尔网格对方法和自适应复合 Barzilai-Borwein 方法,以确保 TV-GML 解的全局超线性收敛性。模拟实验和体内实验的比较结果进一步表明,TV-GML 在定位精度、双源分辨率、形状恢复能力、鲁棒性和体内实用性方面具有优越的重建性能。意义:我们相信,这种新方法将有助于 CLT 在各种临床前应用中的定量分析和形态观察,并促进解决逆问题理论的发展。