Suppr超能文献

Terahertz tunable optically induced lattice in the magnetized monolayer graphene.

作者信息

Wen Feng, Zhang Shaowei, Hui Sijia, Ma Hanghang, Wang Sijia, Ye Huapeng, Wang Wei, Zhu Tianfei, Zhang Yanpeng, Wang Hongxing

出版信息

Opt Express. 2022 Jan 17;30(2):2852-2862. doi: 10.1364/OE.448926.

Abstract

The emergence of monolayer material has opened new avenue for manipulating light beyond the capability of traditional optics. However, controlling the terahertz (THz) wave with magnetized monolayer graphene based on multi-beam interference method is interesting but yet reported. In this article, we report an optically induced lattice with tunability in THz by interfering four plane waves in the magnetized monolayer graphene. We show that the optical properties of the induced optical lattice can be efficiently tuned by varying the optical parameter of the interference beams (i.e., the photon detuning and the Rabi frequency), resulting in both amplitude- and phase-type lattice. Based on Fraunhofer diffraction theory, it is found that the far-field diffraction efficiency is adjustable via varying the probe detuning. Moreover, it is also found that the probe field is diffracted into the high-order direction when the photon detuning is within the triangle-like anti-centrosymmetric region. Such a tunable THz lattice may provide a versatile tool for all-optical switching at the few photons level and paves the way for next generation high-speed wireless communication.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验