Suppr超能文献

基于自适应色彩恢复与去雾的水下图像增强

Underwater image enhancement using adaptive color restoration and dehazing.

作者信息

Li Tengyue, Rong Shenghui, Zhao Wenfeng, Chen Long, Liu Yongbin, Zhou Huiyu, He Bo

出版信息

Opt Express. 2022 Feb 14;30(4):6216-6235. doi: 10.1364/OE.449930.

Abstract

Underwater images captured by optical cameras can be degraded by light attenuation and scattering, which leads to deteriorated visual image quality. The technique of underwater image enhancement plays an important role in a wide range of subsequent applications such as image segmentation and object detection. To address this issue, we propose an underwater image enhancement framework which consists of an adaptive color restoration module and a haze-line based dehazing module. First, we employ an adaptive color restoration method to compensate the deteriorated color channels and restore the colors. The color restoration module consists of three steps: background light estimation, color recognition, and color compensation. The background light estimation determines the image is blueish or greenish, and the compensation is applied in red-green or red-blue channels. Second, the haze-line technique is employed to remove the haze and enhance the image details. Experimental results show that the proposed method can restore the color and remove the haze at the same time, and it also outperforms several state-of-the-art methods on three publicly available datasets. Moreover, experiments on an underwater object detection dataset show that the proposed underwater image enhancement method is able to improve the accuracy of the subsequent underwater object detection framework.

摘要

光学相机拍摄的水下图像会因光衰减和散射而退化,这会导致视觉图像质量下降。水下图像增强技术在图像分割和目标检测等众多后续应用中发挥着重要作用。为了解决这个问题,我们提出了一个水下图像增强框架,它由一个自适应颜色恢复模块和一个基于雾线的去雾模块组成。首先,我们采用一种自适应颜色恢复方法来补偿退化的颜色通道并恢复颜色。颜色恢复模块包括三个步骤:背景光估计、颜色识别和颜色补偿。背景光估计确定图像是偏蓝色还是偏绿色,并在红-绿或红-蓝通道中进行补偿。其次,采用雾线技术去除雾气并增强图像细节。实验结果表明,所提出的方法能够同时恢复颜色和去除雾气,并且在三个公开可用的数据集上也优于几种现有方法。此外,在一个水下目标检测数据集上的实验表明,所提出的水下图像增强方法能够提高后续水下目标检测框架的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验