Schulz Erick, Hiptmair Ralf
ETH Zürich, SAM, HG G 58.3, 8092 Zürich, Switzerland.
Integr Equ Oper Theory. 2022;94(1):7. doi: 10.1007/s00020-022-02684-6. Epub 2022 Feb 3.
We couple the mixed variational problem for the generalized Hodge-Helmholtz or Hodge-Laplace equation posed on a bounded 3D Lipschitz domain with the first-kind boundary integral equations arising from the latter when constant coefficients are assumed in the unbounded complement. Recently developed Calderón projectors for the relevant boundary integral operators are used to perform a symmetric coupling. We prove stability of the coupled problem away from resonant frequencies by establishing a generalized Gårding inequality (T-coercivity). The resulting system of equations describes the scattering of monochromatic electromagnetic waves at a bounded inhomogeneous isotropic body possibly having a "rough" surface. The low-frequency robustness of the potential formulation of Maxwell's equations makes this model a promising starting point for Galerkin discretization.
我们将在有界三维Lipschitz区域上提出的广义Hodge-Helmholtz或Hodge-Laplace方程的混合变分问题,与在无界补区域假设为常系数时由后者产生的第一类边界积分方程进行耦合。利用最近为相关边界积分算子开发的Calderón投影算子来进行对称耦合。我们通过建立广义Gårding不等式(T-强制性)来证明耦合问题在远离共振频率时的稳定性。所得方程组描述了单色电磁波在可能具有“粗糙”表面的有界非均匀各向同性体上的散射。麦克斯韦方程组势形式的低频稳健性使得该模型成为伽辽金离散化的一个有前途的起点。