UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, NW3 2PF, UK.
Centre for Gene Therapy and Regenerative Medicine, MRC Centre for Neurodevelopmental Disorders, Centre for Developmental Neurobiology, Kings College London, London, SE1 9RT, UK.
Adv Mater. 2022 May;34(18):e2110441. doi: 10.1002/adma.202110441. Epub 2022 Mar 31.
Generating skeletal muscle tissue that mimics the cellular alignment, maturation, and function of native skeletal muscle is an ongoing challenge in disease modeling and regenerative therapies. Skeletal muscle cultures require extracellular guidance and mechanical support to stabilize contractile myofibers. Existing microfabrication-based solutions are limited by complex fabrication steps, low throughput, and challenges in measuring dynamic contractile function. Here, the synthesis and characterization of a new biobased nanohybrid elastomer, which is electrospun into aligned nanofiber sheets to mimic the skeletal muscle extracellular matrix, is presented. The polymer exhibits remarkable hyperelasticity well-matched to that of native skeletal muscle (≈11-50 kPa), with ultimate strain ≈1000%, and elastic modulus ≈25 kPa. Uniaxially aligned nanofibers guide myoblast alignment, enhance sarcomere formation, and promote a ≈32% increase in myotube fusion and ≈50% increase in myofiber maturation. The elastomer nanofibers stabilize optogenetically controlled human induced pluripotent stem cell derived skeletal myofibers. When activated by blue light, the myofiber-nanofiber hybrid constructs maintain a significantly higher (>200%) contraction velocity and specific force (>280%) compared to conventional culture methods. The engineered myofibers exhibit a power density of ≈35 W m . This system is a promising new skeletal muscle tissue model for applications in muscular disease modeling, drug discovery, and muscle regeneration.
生成具有天然骨骼肌细胞排列、成熟和功能的骨骼肌组织是疾病建模和再生疗法中的一个持续挑战。骨骼肌培养需要细胞外的引导和机械支持,以稳定收缩肌纤维。现有的基于微制造的解决方案受到复杂制造步骤、低通量和测量动态收缩功能的挑战的限制。在此,介绍了一种新型生物基纳米杂化弹性体的合成和表征,该弹性体被电纺成排列的纳米纤维片,以模拟骨骼肌细胞外基质。该聚合物表现出显著的超弹性,与天然骨骼肌(≈11-50kPa)非常匹配,极限应变≈1000%,弹性模量≈25kPa。单轴对齐的纳米纤维引导成肌细胞的排列,增强肌节的形成,并促进肌管融合增加约 32%,肌纤维成熟增加约 50%。弹性体纳米纤维稳定光遗传控制的人诱导多能干细胞衍生的骨骼肌纤维。当被蓝光激活时,与传统培养方法相比,肌纤维-纳米纤维混合结构保持显著更高(>200%)的收缩速度和比力(>280%)。工程化的肌纤维表现出约 35W m 的功率密度。该系统是一种有前途的新型骨骼肌组织模型,可用于肌肉疾病建模、药物发现和肌肉再生。