Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK.
Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK.
Redox Biol. 2022 May;51:102251. doi: 10.1016/j.redox.2022.102251. Epub 2022 Jan 29.
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by descending skeletal muscle weakness and wasting. FSHD is caused by mis-expression of the transcription factor DUX4, which is linked to oxidative stress, a condition especially detrimental to skeletal muscle with its high metabolic activity and energy demands. Oxidative damage characterises FSHD and recent work suggests metabolic dysfunction and perturbed hypoxia signalling as novel pathomechanisms. However, redox biology of FSHD remains poorly understood, and integrating the complex dynamics of DUX4-induced metabolic changes is lacking. Here we pinpoint the kinetic involvement of altered mitochondrial ROS metabolism and impaired mitochondrial function in aetiology of oxidative stress in FSHD. Transcriptomic analysis in FSHD muscle biopsies reveals strong enrichment for pathways involved in mitochondrial complex I assembly, nitrogen metabolism, oxidative stress response and hypoxia signalling. We found elevated mitochondrial ROS (mitoROS) levels correlate with increases in steady-state mitochondrial membrane potential in FSHD myogenic cells. DUX4 triggers mitochondrial membrane polarisation prior to oxidative stress generation and apoptosis through mitoROS, and affects mitochondrial health through lipid peroxidation. We identify complex I as the primary target for DUX4-induced mitochondrial dysfunction, with strong correlation between complex I-linked respiration and cellular oxygenation/hypoxia signalling activity in environmental hypoxia. Thus, FSHD myogenesis is uniquely susceptible to hypoxia-induced oxidative stress as a consequence of metabolic mis-adaptation. Importantly, mitochondria-targeted antioxidants rescue FSHD pathology more effectively than conventional antioxidants, highlighting the central involvement of disturbed mitochondrial ROS metabolism. This work provides a pathomechanistic model by which DUX4-induced changes in oxidative metabolism impair muscle function in FSHD, amplified when metabolic adaptation to varying O tension is required.
面肩肱型肌营养不良症(FSHD)的特征是进行性骨骼肌无力和萎缩。FSHD 是由转录因子 DUX4 的异常表达引起的,这与氧化应激有关,氧化应激对代谢活性和能量需求高的骨骼肌尤其有害。氧化损伤是 FSHD 的特征,最近的研究表明代谢功能障碍和缺氧信号失调是新的病理机制。然而,FSHD 的氧化还原生物学仍知之甚少,并且缺乏整合 DUX4 诱导的代谢变化的复杂动力学。在这里,我们确定了改变的线粒体 ROS 代谢和受损的线粒体功能在 FSHD 氧化应激发病机制中的动力学参与。FSHD 肌肉活检的转录组分析显示,参与线粒体复合物 I 组装、氮代谢、氧化应激反应和缺氧信号的途径强烈富集。我们发现,在 FSHD 成肌细胞中,线粒体 ROS(mitoROS)水平升高与稳态线粒体膜电位的增加相关。DUX4 通过 mitoROS 在产生氧化应激和细胞凋亡之前触发线粒体膜极化,并通过脂质过氧化影响线粒体健康。我们确定复合物 I 是 DUX4 诱导的线粒体功能障碍的主要靶点,在环境缺氧下,复合物 I 相关呼吸与细胞氧合/缺氧信号活性之间存在强烈相关性。因此,FSHD 成肌细胞由于代谢适应不良,特别容易受到缺氧诱导的氧化应激的影响。重要的是,靶向线粒体的抗氧化剂比传统抗氧化剂更有效地挽救 FSHD 病理,这突出了紊乱的线粒体 ROS 代谢的核心作用。这项工作提供了一个病理机制模型,通过该模型,DUX4 诱导的氧化代谢变化损害 FSHD 中的肌肉功能,当需要适应不同的 O 张力时,这种损害会加剧。