Suppr超能文献

使用深度学习方法在超声图像上预测乳腺癌中的人表皮生长因子受体2(HER2)状态

Predicting HER2 Status in Breast Cancer on Ultrasound Images Using Deep Learning Method.

作者信息

Xu Zilong, Yang Qiwei, Li Minghao, Gu Jiabing, Du Changping, Chen Yang, Li Baosheng

机构信息

Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, China.

Laboratory of Radiation Oncology, School of Medicine, Shandong University, Jinan, China.

出版信息

Front Oncol. 2022 Feb 16;12:829041. doi: 10.3389/fonc.2022.829041. eCollection 2022.

Abstract

PURPOSE

The expression of human epidermal growth factor receptor 2 (HER2) in breast cancer is critical in the treatment with targeted therapy. A 3-block-DenseNet-based deep learning model was developed to predict the expression of HER2 in breast cancer by ultrasound images.

METHODS

The data from 144 breast cancer patients with preoperative ultrasound images and clinical information were retrospectively collected from the Shandong Province Tumor Hospital. An end-to-end 3-block-DenseNet deep learning classifier was built to predict the expression of human epidermal growth factor receptor 2 by ultrasound images. The patients were randomly divided into a training (n = 108) and a validation set (n = 36).

RESULTS

Our proposed deep learning model achieved an encouraging predictive performance in the training set (accuracy = 85.79%, AUC = 0.87) and the validation set (accuracy = 80.56%, AUC = 0.84). The effectiveness of our model significantly exceeded the clinical model and the radiomics model. The score of the proposed model showed significant differences between HER2-positive and -negative expression ( 0.001).

CONCLUSIONS

These results demonstrate that ultrasound images are predictive of HER2 expression through a deep learning classifier. Our method provides a non-invasive, simple, and feasible method for the prediction of HER2 expression without the manual delineation of the regions of interest (ROI). The performance of our deep learning model significantly exceeded the traditional texture analysis based on the radiomics model.

摘要

目的

人表皮生长因子受体2(HER2)在乳腺癌中的表达对于靶向治疗至关重要。开发了一种基于3块密集连接网络(3-block-DenseNet)的深度学习模型,通过超声图像预测乳腺癌中HER2的表达。

方法

回顾性收集山东省肿瘤医院144例有术前超声图像和临床信息的乳腺癌患者的数据。构建了一个端到端的3块密集连接网络深度学习分类器,以通过超声图像预测人表皮生长因子受体2的表达。患者被随机分为训练集(n = 108)和验证集(n = 36)。

结果

我们提出的深度学习模型在训练集(准确率 = 85.79%,曲线下面积 = 0.87)和验证集(准确率 = 80.56%,曲线下面积 = 0.84)中取得了令人鼓舞的预测性能。我们模型的有效性显著超过临床模型和放射组学模型。所提模型的评分在HER2阳性和阴性表达之间显示出显著差异(P < 0.001)。

结论

这些结果表明,通过深度学习分类器,超声图像可预测HER2表达。我们的方法提供了一种非侵入性、简单且可行的方法来预测HER2表达,无需手动勾勒感兴趣区域(ROI)。我们深度学习模型的性能显著超过基于放射组学模型的传统纹理分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d042/8889619/fdd720f1ded2/fonc-12-829041-g001.jpg

相似文献

1
Predicting HER2 Status in Breast Cancer on Ultrasound Images Using Deep Learning Method.
Front Oncol. 2022 Feb 16;12:829041. doi: 10.3389/fonc.2022.829041. eCollection 2022.
2
Deep learning radiomics model based on breast ultrasound video to predict HER2 expression status.
Front Endocrinol (Lausanne). 2023 Apr 18;14:1144812. doi: 10.3389/fendo.2023.1144812. eCollection 2023.
7
10
Evaluating the Accuracy of Breast Cancer and Molecular Subtype Diagnosis by Ultrasound Image Deep Learning Model.
Front Oncol. 2021 Mar 5;11:623506. doi: 10.3389/fonc.2021.623506. eCollection 2021.

引用本文的文献

3
Preoperative prediction of HER2 expression and sentinel lymph node status in breast cancer using a mammography radiomics model.
Front Oncol. 2025 Jun 4;15:1578458. doi: 10.3389/fonc.2025.1578458. eCollection 2025.
4
Deep Learning and Radiomics in Triple-Negative Breast Cancer: Predicting Long-Term Prognosis and Clinical Outcomes.
J Multidiscip Healthc. 2025 Jan 21;18:319-327. doi: 10.2147/JMDH.S509004. eCollection 2025.
5
Deep learning-based computed tomography urography image analysis for prediction of HER2 status in bladder cancer.
J Cancer. 2024 Oct 14;15(19):6336-6344. doi: 10.7150/jca.101296. eCollection 2024.
9
Deep learning radiomics model based on breast ultrasound video to predict HER2 expression status.
Front Endocrinol (Lausanne). 2023 Apr 18;14:1144812. doi: 10.3389/fendo.2023.1144812. eCollection 2023.
10
Artificial Intelligence in Breast Ultrasound: From Diagnosis to Prognosis-A Rapid Review.
Diagnostics (Basel). 2022 Dec 26;13(1):58. doi: 10.3390/diagnostics13010058.

本文引用的文献

1
Identifying ultrasound features of positive expression of Ki67 and P53 in breast cancer using radiomics.
Asia Pac J Clin Oncol. 2021 Oct;17(5):e176-e184. doi: 10.1111/ajco.13397. Epub 2020 Aug 10.
2
Triple-negative breast cancer molecular subtyping and treatment progress.
Breast Cancer Res. 2020 Jun 9;22(1):61. doi: 10.1186/s13058-020-01296-5.
3
Radiomics in breast cancer classification and prediction.
Semin Cancer Biol. 2021 Jul;72:238-250. doi: 10.1016/j.semcancer.2020.04.002. Epub 2020 May 1.
5
Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging.
IEEE Trans Med Imaging. 2019 Dec;38(12):2903-2913. doi: 10.1109/TMI.2019.2917258. Epub 2019 May 17.
6
Deep learning and radiomics in precision medicine.
Expert Rev Precis Med Drug Dev. 2019;4(2):59-72. doi: 10.1080/23808993.2019.1585805. Epub 2019 Apr 19.
8
Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.
Eur Respir J. 2019 Mar 28;53(3). doi: 10.1183/13993003.00986-2018. Print 2019 Mar.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验