Suppr超能文献

USDL:使用深度学习技术和超声技术的低成本医学成像

USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology.

作者信息

Balamurugan Manish, Chung Kathryn, Kuppoor Venkat, Mahapatra Smruti, Pustavoitau Aliaksei, Manbachi Amir

机构信息

Fairfax High School, Fairfax, VA, United States.

Dept of Biomedical Engineering-Johns Hopkins University, Baltimore, MD, United States.

出版信息

Proc Des Med Devices Conf. 2020 Apr;2020. doi: 10.1115/dmd2020-9109. Epub 2020 Jul 27.

Abstract

In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR). In closely simulated conditions, the architecture exhibited an average reconstruction accuracy of 90% as indicated by our SSIM. Our study demonstrates that USDL outperforms state of the art image enhancement and reconstruction techniques in both image quality and computational complexity, while maintaining the architecture efficiency.

摘要

在本研究中,我们提出了USDL,这是一种采用深度学习算法来重建和增强受损超声图像的新型模型。我们使用了一种名为自动编码器的无监督神经网络,它通过将输入压缩成潜在空间表示,然后从该表示中重建输出。我们在一个由15700张颈部、手腕、肘部和膝盖血管图像组成的数据集上训练我们的模型,并使用结构相似性指数(SSIM)和峰值信噪比(PSNR)比较了生成图像的质量。在紧密模拟的条件下,如我们的SSIM所示,该架构表现出90%的平均重建准确率。我们的研究表明,USDL在图像质量和计算复杂度方面均优于现有图像增强和重建技术,同时保持了架构效率。

相似文献

1
USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology.
Proc Des Med Devices Conf. 2020 Apr;2020. doi: 10.1115/dmd2020-9109. Epub 2020 Jul 27.
2
Image reconstruction using UNET-transformer network for fast and low-dose PET scans.
Comput Med Imaging Graph. 2023 Dec;110:102315. doi: 10.1016/j.compmedimag.2023.102315. Epub 2023 Nov 23.
3
Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
PeerJ Comput Sci. 2022 Feb 16;8:e873. doi: 10.7717/peerj-cs.873. eCollection 2022.
4
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.
5
Ultrasound image denoising autoencoder model based on lightweight attention mechanism.
Quant Imaging Med Surg. 2024 May 1;14(5):3557-3571. doi: 10.21037/qims-23-1654. Epub 2024 Apr 10.
6
Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers.
Magn Reson Med Sci. 2020 Aug 3;19(3):195-206. doi: 10.2463/mrms.mp.2019-0018. Epub 2019 Sep 4.
8
Probabilistic self-learning framework for low-dose CT denoising.
Med Phys. 2021 May;48(5):2258-2270. doi: 10.1002/mp.14796. Epub 2021 Mar 17.
9
Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
Med Phys. 2024 Feb;51(2):1289-1312. doi: 10.1002/mp.16331. Epub 2023 Mar 10.
10

引用本文的文献

1
DESIGN OF AN ULTRASOUND PROBE HOLDER TO MINIMIZE MOTION ARTIFACT DURING SONOGRAPHY.
Proc Des Med Devices Conf. 2021 Apr;2021. doi: 10.1115/dmd2021-1049. Epub 2021 May 11.

本文引用的文献

1
Deep Neural Networks for Ultrasound Beamforming.
IEEE Trans Med Imaging. 2018 Sep;37(9):2010-2021. doi: 10.1109/TMI.2018.2809641. Epub 2018 Feb 26.
2
A survey on deep learning in medical image analysis.
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
3
Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler.
Neuroimage. 2016 Jan 1;124(Pt A):752-761. doi: 10.1016/j.neuroimage.2015.09.037. Epub 2015 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验