Balamurugan Manish, Chung Kathryn, Kuppoor Venkat, Mahapatra Smruti, Pustavoitau Aliaksei, Manbachi Amir
Fairfax High School, Fairfax, VA, United States.
Dept of Biomedical Engineering-Johns Hopkins University, Baltimore, MD, United States.
Proc Des Med Devices Conf. 2020 Apr;2020. doi: 10.1115/dmd2020-9109. Epub 2020 Jul 27.
In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR). In closely simulated conditions, the architecture exhibited an average reconstruction accuracy of 90% as indicated by our SSIM. Our study demonstrates that USDL outperforms state of the art image enhancement and reconstruction techniques in both image quality and computational complexity, while maintaining the architecture efficiency.
在本研究中,我们提出了USDL,这是一种采用深度学习算法来重建和增强受损超声图像的新型模型。我们使用了一种名为自动编码器的无监督神经网络,它通过将输入压缩成潜在空间表示,然后从该表示中重建输出。我们在一个由15700张颈部、手腕、肘部和膝盖血管图像组成的数据集上训练我们的模型,并使用结构相似性指数(SSIM)和峰值信噪比(PSNR)比较了生成图像的质量。在紧密模拟的条件下,如我们的SSIM所示,该架构表现出90%的平均重建准确率。我们的研究表明,USDL在图像质量和计算复杂度方面均优于现有图像增强和重建技术,同时保持了架构效率。