Singh Gurmail, Yow Kin-Choong
Faculty of Engineering and Applied SciencesUniversity of Regina Regina SK S4S 0A2 Canada.
IEEE Access. 2021 Jun 8;9:85198-85208. doi: 10.1109/ACCESS.2021.3087583. eCollection 2021.
Timely and accurate detection of an epidemic/pandemic is always desired to prevent its spread. For the detection of any disease, there can be more than one approach including deep learning models. However, transparency/interpretability of the reasoning process of a deep learning model related to health science is a necessity. Thus, we introduce an interpretable deep learning model: Gen-ProtoPNet. Gen-ProtoPNet is closely related to two interpretable deep learning models: ProtoPNet and NP-ProtoPNet The latter two models use prototypes of spacial dimension [Formula: see text] and the distance function [Formula: see text]. In our model, we use a generalized version of the distance function [Formula: see text] that enables us to use prototypes of any type of spacial dimensions, that is, square spacial dimensions and rectangular spacial dimensions to classify an input image. The accuracy and precision that our model receives is on par with the best performing non-interpretable deep learning models when we tested the models on the dataset of [Formula: see text]-ray images. Our model attains the highest accuracy of 87.27% on classification of three classes of images, that is close to the accuracy of 88.42% attained by a non-interpretable model on the classification of the given dataset.
为防止疫情蔓延,人们一直期望能及时、准确地检测出疫情。对于任何疾病的检测,都可以有多种方法,包括深度学习模型。然而,与健康科学相关的深度学习模型推理过程的透明度/可解释性是必不可少的。因此,我们引入了一种可解释的深度学习模型:Gen-ProtoPNet。Gen-ProtoPNet与两种可解释的深度学习模型密切相关:ProtoPNet和NP-ProtoPNet。后两种模型使用空间维度为[公式:见原文]的原型和距离函数[公式:见原文]。在我们的模型中,我们使用了距离函数[公式:见原文]的广义版本,它使我们能够使用任何类型空间维度的原型,即方形空间维度和矩形空间维度来对输入图像进行分类。当我们在[公式:见原文]光图像数据集上测试模型时,我们模型获得的准确率和精确率与表现最佳的不可解释深度学习模型相当。我们的模型在三类图像分类上达到了87.27%的最高准确率,这接近一个不可解释模型在给定数据集分类上达到的88.42%的准确率。