Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China.
Department of Radiation Oncology, Duke University, Durham, North Carolina, USA.
Med Phys. 2022 May;49(5):3213-3222. doi: 10.1002/mp.15582. Epub 2022 Mar 15.
To develop a deep learning model design that integrates radiomics analysis for enhanced performance of COVID-19 and non-COVID-19 pneumonia detection using chest x-ray images.
As a novel radiomics approach, a 2D sliding kernel was implemented to map the impulse response of radiomic features throughout the entire chest x-ray image; thus, each feature is rendered as a 2D map in the same dimension as the x-ray image. Based on each of the three investigated deep neural network architectures, including VGG-16, VGG-19, and DenseNet-121, a pilot model was trained using x-ray images only. Subsequently, two radiomic feature maps (RFMs) were selected based on cross-correlation analysis in reference to the pilot model saliency map results. The radiomics-boosted model was then trained based on the same deep neural network architecture using x-ray images plus the selected RFMs as input. The proposed radiomics-boosted design was developed using 812 chest x-ray images with 262/288/262 COVID-19/non-COVID-19 pneumonia/healthy cases, and 649/163 cases were assigned as training-validation/independent test sets. For each model, 50 runs were trained with random assignments of training/validation cases following the 7:1 ratio in the training-validation set. Sensitivity, specificity, accuracy, and ROC curves together with area-under-the-curve (AUC) from all three deep neural network architectures were evaluated.
After radiomics-boosted implementation, all three investigated deep neural network architectures demonstrated improved sensitivity, specificity, accuracy, and ROC AUC results in COVID-19 and healthy individual classifications. VGG-16 showed the largest improvement in COVID-19 classification ROC (AUC from 0.963 to 0.993), and DenseNet-121 showed the largest improvement in healthy individual classification ROC (AUC from 0.962 to 0.989). The reduced variations suggested improved robustness of the model to data partition. For the challenging non-COVID-19 pneumonia classification task, radiomics-boosted implementation of VGG-16 (AUC from 0.918 to 0.969) and VGG-19 (AUC from 0.964 to 0.970) improved ROC results, while DenseNet-121 showed a slight yet insignificant ROC performance reduction (AUC from 0.963 to 0.949). The achieved highest accuracy of COVID-19/non-COVID-19 pneumonia/healthy individual classifications were 0.973 (VGG-19)/0.936 (VGG-19)/ 0.933 (VGG-16), respectively.
The inclusion of radiomic analysis in deep learning model design improved the performance and robustness of COVID-19/non-COVID-19 pneumonia/healthy individual classification, which holds great potential for clinical applications in the COVID-19 pandemic.
开发一种深度学习模型设计,该设计集成了放射组学分析,以提高使用胸部 X 射线图像检测 COVID-19 和非 COVID-19 肺炎的性能。
作为一种新的放射组学方法,实施了 2D 滑动核,以在整个胸部 X 射线图像上映射放射组学特征的脉冲响应;因此,每个特征都呈现为与 X 射线图像相同维度的 2D 映射。基于所研究的三种深度神经网络架构中的每一种,包括 VGG-16、VGG-19 和 DenseNet-121,使用 X 射线图像仅对试点模型进行了训练。随后,根据试点模型显着性图结果的互相关分析选择了两个放射组学特征图(RFMs)。然后,基于相同的深度神经网络架构,使用 X 射线图像加所选 RFMs 作为输入,对放射组学增强模型进行了训练。使用 812 张胸部 X 射线图像(262/288/262 例 COVID-19/非 COVID-19 肺炎/健康病例)和 649/163 例病例(分别为训练-验证/独立测试集)开发了所提出的放射组学增强设计。对于每个模型,使用随机分配训练/验证病例,在训练-验证集中按 7:1 的比例进行了 50 次运行训练。评估了来自所有三种深度神经网络架构的灵敏度、特异性、准确性和 ROC 曲线以及曲线下面积(AUC)。
在放射组学增强实施后,所研究的三种深度神经网络架构在 COVID-19 和健康个体分类中均显示出改善的敏感性、特异性、准确性和 ROC AUC 结果。VGG-16 在 COVID-19 分类的 ROC 中表现出最大的改善(AUC 从 0.963 增加到 0.993),而 DenseNet-121 在健康个体分类的 ROC 中表现出最大的改善(AUC 从 0.962 增加到 0.989)。减少的变化表明模型对数据分区的稳健性有所提高。对于具有挑战性的非 COVID-19 肺炎分类任务,VGG-16(AUC 从 0.918 增加到 0.969)和 VGG-19(AUC 从 0.964 增加到 0.970)的放射组学增强实施提高了 ROC 结果,而 DenseNet-121 的 ROC 性能略有但无显着降低(AUC 从 0.963 降低到 0.949)。COVID-19/非 COVID-19 肺炎/健康个体分类的最高准确性分别为 0.973(VGG-19)/0.936(VGG-19)/0.933(VGG-16)。
在深度学习模型设计中纳入放射组学分析提高了 COVID-19/非 COVID-19 肺炎/健康个体分类的性能和稳健性,这在 COVID-19 大流行期间的临床应用中具有巨大潜力。