Suppr超能文献

基于函数对函数回归模型的纵向定量性状基因区域关联分析

Gene Region Association Analysis of Longitudinal Quantitative Traits Based on a Function-On-Function Regression Model.

作者信息

Li Shijing, Li Shiqin, Su Shaoqiang, Zhang Hui, Shen Jiayu, Wen Yongxian

机构信息

College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, China.

> Institute of Statistics and Application, Fujian Agriculture and Forestry University, Fuzhou, China.

出版信息

Front Genet. 2022 Feb 21;13:781740. doi: 10.3389/fgene.2022.781740. eCollection 2022.

Abstract

In the process of growth and development in life, gene expressions that control quantitative traits will turn on or off with time. Studies of longitudinal traits are of great significance in revealing the genetic mechanism of biological development. With the development of ultra-high-density sequencing technology, the associated analysis has tremendous challenges to statistical methods. In this paper, a longitudinal functional data association test (LFDAT) method is proposed based on the function-on-function regression model. LFDAT can simultaneously treat phenotypic traits and marker information as continuum variables and analyze the association of longitudinal quantitative traits and gene regions. Simulation studies showed that: 1) LFDAT performs well for both linkage equilibrium simulation and linkage disequilibrium simulation, 2) LFDAT has better performance for gene regions (include common variants, low-frequency variants, rare variants and mixture), and 3) LFDAT can accurately identify gene switching in the growth and development stage. The longitudinal data of the Oryza sativa projected shoot area is analyzed by LFDAT. It showed that there is the advantage of quick calculations. Further, an association analysis was conducted between longitudinal traits and gene regions by integrating the micro effects of multiple related variants and using the information of the entire gene region. LFDAT provides a feasible method for studying the formation and expression of longitudinal traits.

摘要

在生命的生长和发育过程中,控制数量性状的基因表达会随时间开启或关闭。对纵向性状的研究对于揭示生物发育的遗传机制具有重要意义。随着超高密度测序技术的发展,关联分析对统计方法提出了巨大挑战。本文基于函数对函数回归模型提出了一种纵向功能数据关联检验(LFDAT)方法。LFDAT可以同时将表型性状和标记信息视为连续变量,并分析纵向数量性状与基因区域的关联。模拟研究表明:1)LFDAT在连锁平衡模拟和连锁不平衡模拟中均表现良好;2)LFDAT在基因区域(包括常见变异、低频变异、罕见变异及混合情况)方面具有更好的性能;3)LFDAT能够准确识别生长发育阶段的基因开关。利用LFDAT对水稻投影茎面积的纵向数据进行了分析。结果表明其具有计算速度快的优势。此外,通过整合多个相关变异的微效应并利用整个基因区域的信息,对纵向性状与基因区域进行了关联分析。LFDAT为研究纵向性状的形成和表达提供了一种可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c5/8899465/73816d794181/fgene-13-781740-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验