Suppr超能文献

基于 WT-UKF 和 IPSO-SVM 的心电图信号识别。

The Identification of ECG Signals Using WT-UKF and IPSO-SVM.

机构信息

School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, China.

School of Humanities and Foreign Languages, Xi'an University of Technology, Xi'an 710048, China.

出版信息

Sensors (Basel). 2022 Mar 2;22(5):1962. doi: 10.3390/s22051962.

Abstract

The biometric identification method is a current research hotspot in the pattern recognition field. Due to the advantages of electrocardiogram (ECG) signals, which are difficult to replicate and easy to obtain, ECG-based identity identification has become a new direction in biometric recognition research. In order to improve the accuracy of ECG signal identification, this paper proposes an ECG identification method based on a multi-scale wavelet transform combined with the unscented Kalman filter (WT-UKF) algorithm and the improved particle swarm optimization-support vector machine (IPSO-SVM). First, the WT-UKF algorithm can effectively eliminate the noise components and preserve the characteristics of ECG signals when denoising the ECG data. Then, the wavelet positioning method is used to detect the feature points of the denoised signals, and the obtained feature points are combined with multiple feature vectors to characterize the ECG signals, thus reducing the data dimension in identity identification. Finally, SVM is used for ECG signal identification, and the improved particle swarm optimization (IPSO) algorithm is used for parameter optimization in SVM. According to the analysis of simulation experiments, compared with the traditional WT denoising, the WT-UKF method proposed in this paper improves the accuracy of feature point detection and increases the final recognition rate by 1.5%. The highest recognition accuracy of a single individual in the entire ECG identification system achieves 100%, and the average recognition accuracy can reach 95.17%.

摘要

生物识别方法是模式识别领域当前的研究热点。由于心电图(ECG)信号难以复制且易于获取,因此基于 ECG 的身份识别已成为生物识别研究的新方向。为了提高 ECG 信号识别的准确性,本文提出了一种基于多尺度小波变换与无迹卡尔曼滤波(WT-UKF)算法和改进粒子群优化-支持向量机(IPSO-SVM)相结合的 ECG 识别方法。首先,WT-UKF 算法可以在对 ECG 数据进行去噪时有效地消除噪声分量并保留 ECG 信号的特征。然后,使用小波定位方法检测去噪信号的特征点,并将获得的特征点与多个特征向量相结合来描述 ECG 信号,从而降低身份识别中的数据维度。最后,使用支持向量机(SVM)进行 ECG 信号识别,并使用改进的粒子群优化(IPSO)算法对 SVM 中的参数进行优化。根据仿真实验的分析,与传统的 WT 去噪相比,本文提出的 WT-UKF 方法提高了特征点检测的准确性,最终识别率提高了 1.5%。整个 ECG 识别系统中单个个体的最高识别准确率达到 100%,平均识别准确率可达 95.17%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e202/8915117/388780538f13/sensors-22-01962-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验