Suppr超能文献

基于原型的 Winner-Take-All 神经网络中神经元功能的解释。

Prototype-Based Interpretation of the Functionality of Neurons in Winner-Take-All Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9016-9028. doi: 10.1109/TNNLS.2022.3155174. Epub 2023 Oct 27.

Abstract

Prototype-based learning (PbL) using a winner-take-all (WTA) network based on minimum Euclidean distance (ED-WTA) is an intuitive approach to multiclass classification. By constructing meaningful class centers, PbL provides higher interpretability and generalization than hyperplane-based learning (HbL) methods based on maximum inner product (IP-WTA) and can efficiently detect and reject samples that do not belong to any classes. In this article, we first prove the equivalence of IP-WTA and ED-WTA from a representational power perspective. Then, we show that naively using this equivalence leads to unintuitive ED-WTA networks in which the centers have high distances to data that they represent. We propose ±ED-WTA that models each neuron with two prototypes: one positive prototype, representing samples modeled by that neuron, and a negative prototype, representing the samples erroneously won by that neuron during training. We propose a novel training algorithm for the ±ED-WTA network, which cleverly switches between updating the positive and negative prototypes and is essential to the emergence of interpretable prototypes. Unexpectedly, we observed that the negative prototype of each neuron is indistinguishably similar to the positive one. The rationale behind this observation is that the training data that are mistaken for a prototype are indeed similar to it. The main finding of this article is this interpretation of the functionality of neurons as computing the difference between the distances to a positive and a negative prototype, which is in agreement with the BCM theory. Our experiments show that the proposed ±ED-WTA method constructs highly interpretable prototypes that can be successfully used for explaining the functionality of deep neural networks (DNNs), and detecting outlier and adversarial examples.

摘要

基于最小欧式距离(ED-WTA)的胜者全取(WTA)网络的原型学习(PbL)是一种用于多类分类的直观方法。通过构建有意义的类别中心,PbL 提供了比基于最大内积(IP-WTA)的超平面学习(HbL)方法更高的可解释性和泛化能力,并且可以有效地检测和拒绝不属于任何类别的样本。在本文中,我们首先从表示能力的角度证明了 IP-WTA 和 ED-WTA 的等价性。然后,我们表明,盲目使用这种等价性会导致直觉上不合理的 ED-WTA 网络,其中中心与它们所代表的数据有很高的距离。我们提出了 ±ED-WTA,它为每个神经元建模两个原型:一个正原型,代表该神经元建模的样本,一个负原型,代表该神经元在训练过程中错误赢得的样本。我们提出了一种新的 ±ED-WTA 网络的训练算法,该算法巧妙地在更新正原型和负原型之间切换,这对于可解释原型的出现至关重要。出乎意料的是,我们观察到每个神经元的负原型与正原型几乎无法区分。这种观察背后的原理是,被误认为原型的训练数据确实与它相似。本文的主要发现是这种对神经元功能的解释,即将距离正原型和负原型的距离差异作为神经元的计算,这与 BCM 理论一致。我们的实验表明,所提出的 ±ED-WTA 方法构建了高度可解释的原型,可以成功地用于解释深度神经网络(DNN)的功能,并检测异常值和对抗示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验