Suppr超能文献

可穿戴设备评估抗癫痫药物对皮肤电活动、心率和心率变异性昼夜模式的影响。

Wearable device assessments of antiseizure medication effects on diurnal patterns of electrodermal activity, heart rate, and heart rate variability.

作者信息

Halimeh Mustafa, Yang Yonghua, Sheehan Theodore, Vieluf Solveig, Jackson Michele, Loddenkemper Tobias, Meisel Christian

机构信息

Computational Neurology, Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Germany.

Hospital of Xi'an Jiaotong University, Pediatric Department, Shaanxi, China.

出版信息

Epilepsy Behav. 2022 Apr;129:108635. doi: 10.1016/j.yebeh.2022.108635. Epub 2022 Mar 9.

Abstract

Patient-generated health data provide a great opportunity for more detailed ambulatory monitoring and more personalized treatments in many diseases. In epilepsy, robust diagnostics applicable to the ambulatory setting are needed as diagnosis and treatment decisions in current clinical practice are primarily reliant on patient self-reports, which are often inaccurate. Recent work using wearable devices has focused on methods to detect and forecast epileptic seizures. Whether wearable device signals may also contain information about the effect of antiseizure medications (ASMs), which may ultimately help to better monitor their efficacy, has not been evaluated yet. Here we systematically investigated the effect of ASMs on different data modalities (electrodermal activity, EDA, heart rate, HR, and heart rate variability, HRV) simultaneously recorded by a wearable device in 48 patients with epilepsy over several days in the epilepsy long-term monitoring unit at a tertiary hospital. All signals exhibited characteristic diurnal variations. HRV, but not HR or EDA-based metrics, were reduced by ASMs. By assessing multiple signals related to the autonomic nervous system simultaneously, our results provide novel insights into the effects of ASMs on the sympathetic and parasympathetic interplay in the setting of epilepsy and indicate the potential of easy-to-wear wearable devices for monitoring ASM action. Future work using longer data may investigate these metrics on multidien cycles and their utility for detecting seizures, assessing seizure risk, or informing treatment interventions.

摘要

患者生成的健康数据为多种疾病的更详细动态监测和更个性化治疗提供了绝佳机会。在癫痫领域,由于当前临床实践中的诊断和治疗决策主要依赖于患者的自我报告,而这些报告往往不准确,因此需要适用于动态环境的可靠诊断方法。最近使用可穿戴设备的研究工作主要集中在检测和预测癫痫发作的方法上。可穿戴设备信号是否也可能包含有关抗癫痫药物(ASM)效果的信息,而这最终可能有助于更好地监测其疗效,目前尚未得到评估。在此,我们系统地研究了在一家三级医院的癫痫长期监测病房中,ASM对48例癫痫患者在数天内由可穿戴设备同时记录的不同数据模式(皮肤电活动,EDA;心率,HR;以及心率变异性,HRV)的影响。所有信号均呈现出特征性的昼夜变化。ASM会降低HRV,但不会降低基于HR或EDA的指标。通过同时评估与自主神经系统相关的多个信号,我们的结果为ASM在癫痫背景下对交感神经和副交感神经相互作用的影响提供了新的见解,并表明了易于佩戴的可穿戴设备在监测ASM作用方面的潜力。未来使用更长数据的研究可能会在多日周期内研究这些指标及其在检测癫痫发作、评估发作风险或为治疗干预提供信息方面的效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验