College of Marine Science and Technology, China University of Geosciencesgrid.162107.3, Wuhan, People's Republic of China.
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen Universitygrid.12955.3a, Xiamen, People's Republic of China.
mBio. 2022 Apr 26;13(2):e0302721. doi: 10.1128/mbio.03027-21. Epub 2022 Mar 14.
is the key primary producer in marine ecosystems, and the high-light-adapted clade II (HLII) is the most abundant ecotype. However, the genomic and ecological basis of HLII in the marine environment has remained elusive. Here, we show that the ecologically coherent subclade differentiation of HLII corresponds to genomic and ecological characteristics on the basis of analyses of 31 different strains of HLII, including 12 novel isolates. Different subclades of HLII with different core and accessory genes were identified, and their distribution in the marine environment was explored using the TARA Oceans metagenome database. Three major subclade groups were identified, , the surface group (HLII-SG), the transition group (HLII-TG), and the deep group (HLII-DG). These subclade groups showed different temperature ranges and optima for distribution. In regression analyses, temperature and nutrient availability were identified as key factors affecting the distribution of HLII subclades. A 35% increase in the relative abundance of HLII-SG by the end of the 21st century was predicted under the Representative Concentration Pathway 8.5 scenario. Our results show that the ubiquity and distribution of HLII in the marine environment are associated with the differentiation of diverse subclades. These findings provide insights into the large-scale shifts in the community in response to future climate change. is the most abundant oxygenic photosynthetic microorganism on Earth, and high-light-adapted clade II (HLII) is the dominant ecotype. However, the factors behind the dominance of HLII in the vast oligotrophic oceans are still unknown. Here, we identified three distinct groups of HLII subclades, , the surface group (HLII-SG), the transition group (HLII-TG), and the deep group (HLII-DG). We further demonstrated that the ecologically coherent subclade differentiation of HLII corresponds to genomic and ecological characteristics. Our study suggests that the differentiation of diverse subclades underlies the ubiquity and distribution of HLII in the marine environment and provides insights into the shifts in the community in response to future climate change.
是海洋生态系统中的关键初级生产者,高光适应的 clade II(HLII)是最丰富的生态型。然而,海洋环境中 HLII 的基因组和生态基础仍然难以捉摸。在这里,我们展示了基于对 31 株不同 HLII 菌株(包括 12 株新分离株)的分析,HLII 的生态一致的亚群分化与基因组和生态特征相对应。确定了具有不同核心和辅助基因的不同 HLII 亚群,并利用 TARA 海洋宏基因组数据库探索了它们在海洋环境中的分布。确定了三个主要的亚群组, ,表面组(HLII-SG),过渡组(HLII-TG)和深部组(HLII-DG)。这些亚群组表现出不同的温度范围和分布最佳温度。在回归分析中,温度和养分供应被确定为影响 HLII 亚群分布的关键因素。在代表浓度途径 8.5 情景下,预计到 21 世纪末 HLII-SG 的相对丰度将增加 35%。我们的研究结果表明,海洋环境中 HLII 的普遍性和分布与不同亚群的分化有关。这些发现为了解在未来气候变化下群落的大规模变化提供了线索。 是地球上最丰富的需氧光合作用微生物,高光适应的 clade II(HLII)是主要的生态型。然而,HLII 在广阔的贫营养海洋中占主导地位的原因仍不清楚。在这里,我们确定了 HLII 的三个不同的亚群组, ,表面组(HLII-SG),过渡组(HLII-TG)和深部组(HLII-DG)。我们进一步证明,HLII 的生态一致的亚群分化与基因组和生态特征相对应。我们的研究表明,不同亚群的分化是 HLII 在海洋环境中普遍存在和分布的基础,并为了解未来气候变化下群落的变化提供了线索。