Suppr超能文献

在真实条件下通过连续血糖监测预测糖化血红蛋白:改进的估计方法。

Predicting Glycated Hemoglobin Through Continuous Glucose Monitoring in Real-Life Conditions: Improved Estimation Methods.

机构信息

Division of Endocrinology, Diabetology & Metabolic Diseases, Department of Medical Sciences, University of Turin, Torino, Italy.

Division of Diabetology, Civil Hospital SS. Annunziata, Savigliano, Italy.

出版信息

J Diabetes Sci Technol. 2023 Jul;17(4):998-1007. doi: 10.1177/19322968221081556. Epub 2022 Mar 14.

Abstract

BACKGROUND

The adoption of continuous glucose monitoring (CGM) already helps to improve glycemic control in diabetes. When coupled with appropriate data analysis techniques, CGM also provides dependable estimates for significant metrics, like glycated hemoglobin (HbA1c). Findings from the REALISM-T1D study can boost HbA1c estimation methods in diabetes care and stimulate their use in clinical practice.

METHODS

Continuous glucose monitoring data of 27 adults affected by type-1 diabetes were acquired by means of G6 (Dexcom, San Diego, CA) sensors for a time span of 120 days. Glycated hemoglobin laboratory assays were performed during the concluding follow-up visits. Data were then analyzed to derive estimates of assay results, taken as the gold standard.

RESULTS

Bland-Altman (BA) plots show that smart interpolation to patch missing data and a wise choice of interstitial glucose (IG) weighting function, besides a proper mean interstitial glucose (MIG) to HbA1c regression equation, improve HbA1c estimation quality with respect to methods relying on MIG alone. A decrease in the BA plot-related variance of differences with respect to the gold standard confirms the improvement. Wilcoxon signed-rank tests on the bias-compensated mean squared error (MSE) with respect to conventional MIG-based methods show that the improvement is statistically significant with a confidence level better than 95% ( = .0179).

CONCLUSIONS

Improved HbA1c estimation methods result in better HbA1c prediction quality with respect to those based on MIG alone, thus providing quick, but still relatively accurate feedback to diabetologists. They alleviate the discordances reported in literature and, with further improvements, may become a viable complement/alternative to HbA1c assays.

摘要

背景

连续血糖监测(CGM)的采用已经有助于改善糖尿病患者的血糖控制。当与适当的数据分析技术结合使用时,CGM 还可以为重要指标(如糖化血红蛋白(HbA1c))提供可靠的估计值。REALISM-T1D 研究的结果可以提高糖尿病护理中 HbA1c 估计方法的水平,并刺激其在临床实践中的应用。

方法

通过 G6(Dexcom,圣地亚哥,CA)传感器采集 27 名 1 型糖尿病患者的连续血糖监测数据,时间跨度为 120 天。在最后一次随访时进行糖化血红蛋白实验室检测。然后对数据进行分析,得出作为金标准的检测结果估计值。

结果

Bland-Altman(BA)图显示,智能插值以修补缺失数据,明智地选择间质葡萄糖(IG)加权函数,以及适当的平均间质葡萄糖(MIG)与 HbA1c 回归方程,相对于仅依赖 MIG 的方法,提高了 HbA1c 估计的质量。与金标准相比,BA 图相关差异方差的减小证实了这一改进。Wilcoxon 符号秩检验显示,与传统基于 MIG 的方法相比,经偏差补偿的均方误差(MSE)的偏差具有统计学意义,置信水平优于 95%(=0.0179)。

结论

与仅基于 MIG 的方法相比,改进的 HbA1c 估计方法可提高 HbA1c 的预测质量,从而为糖尿病专家提供快速但相对准确的反馈。它们减轻了文献中报道的不一致性,并且随着进一步的改进,可能成为 HbA1c 检测的可行补充/替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/473a/10347988/4f02ea640a56/10.1177_19322968221081556-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验