Suppr超能文献

一种新的人脑纵向结构 MRI 对称配准方法。

A new approach to symmetric registration of longitudinal structural MRI of the human brain.

机构信息

The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA.

出版信息

J Neurosci Methods. 2022 May 1;373:109563. doi: 10.1016/j.jneumeth.2022.109563. Epub 2022 Mar 11.

Abstract

BACKGROUND

This paper presents the Automatic Temporal Registration Algorithm (ATRA) for symmetric rigid-body registration of longitudinal T-weighted three-dimensional MRI scans of the human brain. This is a fundamental processing step in computational neuroimaging.

NEW METHOD

The notion of leave-one-out consistent (LOOC) landmarks with respect to a supervised landmark detection algorithm is introduced. An automatic algorithm is presented for identification of LOOC landmarks on MRI scans. Multiple sets of LOOC landmarks are identified on each volume and a Generalized Orthogonal Procrustes Analysis of the landmarks is used to find a rigid-body transformation of each volume into a common space where the volumes are aligned precisely.

RESULTS

Qualitative and quantitative evaluations of ATRA registration accuracy were performed using 2012 volumes from 503 subjects (4 longitudinal volumes/subject), and on a further 120 volumes acquired from 3 normal subjects (40 longitudinal volumes/subject). Since the ground truth registrations are unknown, we devised a novel method for showing that ATRA's registration accuracy is at least better than 0.5 mm translation or 0.5° rotation.

COMPARISON WITH EXISTING METHOD(S): In comparison with existing methods, ATRA does not require any image preprocessing (e.g., skull-stripping or intensity normalization) and can handle conditions where rigid-body motion assumptions are not true (e.g., movement in eyes, jaw, neck) and brain tissue loss over time in neurodegenerative diseases. In a systematic comparison with the FSL FLIRT algorithm, ATRA provided faster and more accurate registrations.

CONCLUSIONS

The algorithm is symmetric, in the sense that any permutation of the input volumes does not change the transformation matrices, and unbiased, in that all volumes undergo exactly one interpolation operation, which precisely aligns them in a common space. There is no interpolation bias and no reference volume. All volumes are treated exactly the same. The algorithm is fast and highly accurate.

摘要

背景

本文提出了一种用于纵向 T1 加权三维人脑 MRI 扫描的对称刚体配准的自动时间配准算法(ATRA)。这是计算神经影像学中的基本处理步骤。

新方法

介绍了一种关于监督地标检测算法的留一法一致(LOOC)地标概念。提出了一种用于在 MRI 扫描上识别 LOOC 地标自动算法。在每个体积上识别多组 LOOC 地标,并对地标进行广义正交 Procrustes 分析,以找到将每个体积转换为精确对齐的公共空间的刚体变换。

结果

使用 503 名受试者的 2012 个容积(每个受试者 4 个纵向容积)和 3 名正常受试者的另外 120 个容积(每个受试者 40 个纵向容积)对 ATRA 配准精度进行了定性和定量评估。由于地面真实配准未知,我们设计了一种新方法来表明 ATRA 的配准精度至少优于 0.5 毫米平移或 0.5°旋转。

与现有方法的比较

与现有方法相比,ATRA 不需要任何图像预处理(例如,颅骨剥离或强度归一化),并且可以处理刚体运动假设不成立的情况(例如,眼睛、下巴、颈部运动)和神经退行性疾病中随时间的脑组织损失。与 FSL FLIRT 算法的系统比较表明,ATRA 提供了更快、更准确的配准。

结论

该算法是对称的,因为输入容积的任何排列都不会改变变换矩阵,并且是无偏的,因为所有容积都仅经历一次插值操作,这恰好将它们精确地对齐到公共空间中。没有插值偏差,也没有参考容积。所有容积都被精确地同等对待。该算法快速且高度准确。

相似文献

1
A new approach to symmetric registration of longitudinal structural MRI of the human brain.
J Neurosci Methods. 2022 May 1;373:109563. doi: 10.1016/j.jneumeth.2022.109563. Epub 2022 Mar 11.
3
Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans.
J Neurosci Methods. 2005 Mar 15;142(1):67-76. doi: 10.1016/j.jneumeth.2004.07.014.
4
Retrospective registration of PET and MR brain images: an algorithm and its stereotactic validation.
J Comput Assist Tomogr. 1994 Sep-Oct;18(5):800-10. doi: 10.1097/00004728-199409000-00021.
5
Vervet MRI atlas and label map for fully automated morphometric analyses.
Neuroinformatics. 2014 Oct;12(4):543-50. doi: 10.1007/s12021-014-9231-8.
6
Reference-free brain template construction with population symmetric registration.
Med Biol Eng Comput. 2020 Sep;58(9):2083-2093. doi: 10.1007/s11517-020-02226-5. Epub 2020 Jul 10.
7
Automatic selection of landmarks in T1-weighted head MRI with regression forests for image registration initialization.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254769. Epub 2017 Feb 24.
9
Improving brain atrophy quantification with deep learning from automated labels using tissue similarity priors.
Comput Biol Med. 2024 Sep;179:108811. doi: 10.1016/j.compbiomed.2024.108811. Epub 2024 Jul 10.
10
Automated alignment of perioperative MRI scans: A technical note and application in pediatric epilepsy surgery.
Hum Brain Mapp. 2016 Oct;37(10):3530-43. doi: 10.1002/hbm.23257. Epub 2016 May 16.

引用本文的文献

1
Mapping early corpus callosum development to identify neurodevelopmental risk.
Dev Cogn Neurosci. 2025 Aug 12;75:101605. doi: 10.1016/j.dcn.2025.101605.
2
qDESH: a method to quantify disproportionately enlarged subarachnoid space hydrocephalus.
Fluids Barriers CNS. 2025 Jul 1;22(1):67. doi: 10.1186/s12987-025-00677-2.
3
aXonica: A support package for MRI based Neuroimaging.
Biotechnol Notes. 2024 Aug 22;5:120-136. doi: 10.1016/j.biotno.2024.08.001. eCollection 2024.
5
Sample size requirement for achieving multisite harmonization using structural brain MRI features.
Neuroimage. 2022 Dec 1;264:119768. doi: 10.1016/j.neuroimage.2022.119768. Epub 2022 Nov 24.

本文引用的文献

1
Robust automated constellation-based landmark detection in human brain imaging.
Neuroimage. 2018 Apr 15;170:471-481. doi: 10.1016/j.neuroimage.2017.04.012. Epub 2017 Apr 6.
2
Detection of Focal Longitudinal Changes in the Brain by Subtraction of MR Images.
AJNR Am J Neuroradiol. 2017 May;38(5):923-927. doi: 10.3174/ajnr.A5165. Epub 2017 Mar 31.
3
Regional analysis of volumes and reproducibilities of automatic and manual hippocampal segmentations.
PLoS One. 2017 Feb 9;12(2):e0166785. doi: 10.1371/journal.pone.0166785. eCollection 2017.
5
Analysis of the MIRIAD Data Shows Sex Differences in Hippocampal Atrophy Progression.
J Alzheimers Dis. 2016;50(3):847-57. doi: 10.3233/JAD-150780.
6
Reliability of brain volume measurements: a test-retest dataset.
Sci Data. 2014 Oct 14;1:140037. doi: 10.1038/sdata.2014.37. eCollection 2014.
7
Automatic localization of the anterior commissure, posterior commissure, and midsagittal plane in MRI scans using regression forests.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1362-74. doi: 10.1109/JBHI.2015.2428672. Epub 2015 Apr 30.
8
Brain symmetry plane detection based on fractal analysis.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):568-80. doi: 10.1016/j.compmedimag.2013.06.001. Epub 2013 Jun 29.
9
Symmetric diffeomorphic modeling of longitudinal structural MRI.
Front Neurosci. 2013 Feb 5;6:197. doi: 10.3389/fnins.2012.00197. eCollection 2012.
10
Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal MRI.
AJNR Am J Neuroradiol. 2013 Jan;34(1):68-73. doi: 10.3174/ajnr.A3172. Epub 2012 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验