The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
J Neurosci Methods. 2022 May 1;373:109563. doi: 10.1016/j.jneumeth.2022.109563. Epub 2022 Mar 11.
This paper presents the Automatic Temporal Registration Algorithm (ATRA) for symmetric rigid-body registration of longitudinal T-weighted three-dimensional MRI scans of the human brain. This is a fundamental processing step in computational neuroimaging.
The notion of leave-one-out consistent (LOOC) landmarks with respect to a supervised landmark detection algorithm is introduced. An automatic algorithm is presented for identification of LOOC landmarks on MRI scans. Multiple sets of LOOC landmarks are identified on each volume and a Generalized Orthogonal Procrustes Analysis of the landmarks is used to find a rigid-body transformation of each volume into a common space where the volumes are aligned precisely.
Qualitative and quantitative evaluations of ATRA registration accuracy were performed using 2012 volumes from 503 subjects (4 longitudinal volumes/subject), and on a further 120 volumes acquired from 3 normal subjects (40 longitudinal volumes/subject). Since the ground truth registrations are unknown, we devised a novel method for showing that ATRA's registration accuracy is at least better than 0.5 mm translation or 0.5° rotation.
COMPARISON WITH EXISTING METHOD(S): In comparison with existing methods, ATRA does not require any image preprocessing (e.g., skull-stripping or intensity normalization) and can handle conditions where rigid-body motion assumptions are not true (e.g., movement in eyes, jaw, neck) and brain tissue loss over time in neurodegenerative diseases. In a systematic comparison with the FSL FLIRT algorithm, ATRA provided faster and more accurate registrations.
The algorithm is symmetric, in the sense that any permutation of the input volumes does not change the transformation matrices, and unbiased, in that all volumes undergo exactly one interpolation operation, which precisely aligns them in a common space. There is no interpolation bias and no reference volume. All volumes are treated exactly the same. The algorithm is fast and highly accurate.
本文提出了一种用于纵向 T1 加权三维人脑 MRI 扫描的对称刚体配准的自动时间配准算法(ATRA)。这是计算神经影像学中的基本处理步骤。
介绍了一种关于监督地标检测算法的留一法一致(LOOC)地标概念。提出了一种用于在 MRI 扫描上识别 LOOC 地标自动算法。在每个体积上识别多组 LOOC 地标,并对地标进行广义正交 Procrustes 分析,以找到将每个体积转换为精确对齐的公共空间的刚体变换。
使用 503 名受试者的 2012 个容积(每个受试者 4 个纵向容积)和 3 名正常受试者的另外 120 个容积(每个受试者 40 个纵向容积)对 ATRA 配准精度进行了定性和定量评估。由于地面真实配准未知,我们设计了一种新方法来表明 ATRA 的配准精度至少优于 0.5 毫米平移或 0.5°旋转。
与现有方法相比,ATRA 不需要任何图像预处理(例如,颅骨剥离或强度归一化),并且可以处理刚体运动假设不成立的情况(例如,眼睛、下巴、颈部运动)和神经退行性疾病中随时间的脑组织损失。与 FSL FLIRT 算法的系统比较表明,ATRA 提供了更快、更准确的配准。
该算法是对称的,因为输入容积的任何排列都不会改变变换矩阵,并且是无偏的,因为所有容积都仅经历一次插值操作,这恰好将它们精确地对齐到公共空间中。没有插值偏差,也没有参考容积。所有容积都被精确地同等对待。该算法快速且高度准确。