Suppr超能文献

利用基于迁移学习的卷积神经网络对 chest CT 图像进行 COVID-19 的自动诊断和分类。

An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network.

机构信息

Princess Nourah bint Abdulrahman University, College of Nursing, Riyadh, 11671, Riyadh, P.O. BOX 84428, Saudi Arabia.

Taibah University, College of Computer Science and Engineering, Yanbu, 46421, Saudi Arabia.

出版信息

Comput Biol Med. 2022 May;144:105383. doi: 10.1016/j.compbiomed.2022.105383. Epub 2022 Mar 10.

Abstract

Researchers have developed more intelligent, highly responsive, and efficient detection methods owing to the COVID-19 demands for more widespread diagnosis. The work done deals with developing an AI-based framework that can help radiologists and other healthcare professionals diagnose COVID-19 cases at a high level of accuracy. However, in the absence of publicly available CT datasets, the development of such AI tools can prove challenging. Therefore, an algorithm for performing automatic and accurate COVID-19 classification using Convolutional Neural Network (CNN), pre-trained model, and Sparrow search algorithm (SSA) on CT lung images was proposed. The pre-trained CNN models used are SeresNext50, SeresNext101, SeNet154, MobileNet, MobileNetV2, MobileNetV3Small, and MobileNetV3Large. In addition, the SSA will be used to optimize the different CNN and transfer learning(TL) hyperparameters to find the best configuration for the pre-trained model used and enhance its performance. Two datasets are used in the experiments. There are two classes in the first dataset, while three in the second. The authors combined two publicly available COVID-19 datasets as the first dataset, namely the COVID-19 Lung CT Scans and COVID-19 CT Scan Dataset. In total, 14,486 images were included in this study. The authors analyzed the Large COVID-19 CT scan slice dataset in the second dataset, which utilized 17,104 images. Compared to other pre-trained models on both classes datasets, MobileNetV3Large pre-trained is the best model. As far as the three-classes dataset is concerned, a model trained on SeNet154 is the best available. Results show that, when compared to other CNN models like LeNet-5 CNN, COVID faster R-CNN, Light CNN, Fuzzy + CNN, Dynamic CNN, CNN and Optimized CNN, the proposed Framework achieves the best accuracy of 99.74% (two classes) and 98% (three classes).

摘要

由于 COVID-19 需要更广泛的诊断,研究人员已经开发出更智能、高响应和高效的检测方法。这项工作涉及开发一个基于人工智能的框架,该框架可以帮助放射科医生和其他医疗保健专业人员以高精度诊断 COVID-19 病例。然而,在缺乏公开可用的 CT 数据集的情况下,开发这种人工智能工具可能具有挑战性。因此,提出了一种使用卷积神经网络 (CNN)、预训练模型和麻雀搜索算法 (SSA) 在 CT 肺部图像上进行自动和准确 COVID-19 分类的算法。使用的预训练 CNN 模型是 SeresNext50、SeresNext101、SeNet154、MobileNet、MobileNetV2、MobileNetV3Small 和 MobileNetV3Large。此外,SSA 将用于优化不同的 CNN 和迁移学习 (TL) 超参数,以找到用于预训练模型的最佳配置并提高其性能。实验中使用了两个数据集。第一个数据集有两个类别,第二个数据集有三个类别。作者将两个公开的 COVID-19 数据集合并作为第一个数据集,即 COVID-19 肺部 CT 扫描和 COVID-19 CT 扫描数据集。共有 14486 张图像包含在这项研究中。作者分析了第二个数据集的大型 COVID-19 CT 扫描切片数据集,该数据集使用了 17104 张图像。与其他两个数据集的预训练模型相比,MobileNetV3Large 预训练模型是最好的模型。就三类数据集而言,基于 SeNet154 训练的模型是最好的。结果表明,与 LeNet-5 CNN、COVID faster R-CNN、Light CNN、Fuzzy + CNN、Dynamic CNN、CNN 和 Optimized CNN 等其他 CNN 模型相比,所提出的框架在两个类别上实现了 99.74%的最佳准确性,在三个类别上实现了 98%的最佳准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c465/8906898/441104187feb/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验