Liang Zefeng, Wang Huan, Yang Kaixiang, Shi Yifan
School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.
Guangdong Institute of Scientific and Technical Information, Guangzhou, China.
Front Neurorobot. 2022 Feb 28;16:827913. doi: 10.3389/fnbot.2022.827913. eCollection 2022.
The imbalance problem is widespread in real-world applications. When training a classifier on the imbalance datasets, the classifier is hard to learn an appropriate decision boundary, which causes unsatisfying classification performance. To deal with the imbalance problem, various ensemble algorithms are proposed. However, conventional ensemble algorithms do not consider exploring an effective feature space to further improve the performance. In addition, they treat the base classifiers equally and ignore the different contributions of each base classifier to the ensemble result. In order to address these problems, we propose a novel ensemble algorithm that combines effective data transformation and an adaptive weighted voting scheme. First, we utilize modified metric learning to obtain an effective feature space based on imbalanced data. Next, the base classifiers are assigned different weights adaptively. The experiments on multiple imbalanced datasets, including images and biomedical datasets verify the superiority of our proposed ensemble algorithm.
不平衡问题在实际应用中广泛存在。在不平衡数据集上训练分类器时,分类器很难学习到合适的决策边界,这导致分类性能不尽人意。为了解决不平衡问题,人们提出了各种集成算法。然而,传统的集成算法没有考虑探索有效的特征空间以进一步提高性能。此外,它们平等对待基分类器,而忽略了每个基分类器对集成结果的不同贡献。为了解决这些问题,我们提出了一种新颖的集成算法,该算法结合了有效的数据变换和自适应加权投票方案。首先,我们利用改进的度量学习基于不平衡数据获得有效的特征空间。接下来,为基分类器自适应地分配不同的权重。在包括图像和生物医学数据集在内的多个不平衡数据集上进行的实验验证了我们提出的集成算法的优越性。