Department of Management, Policy, and Community Health, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, 1200 Pressler St, Houston, TX, 77030, USA.
Sinai Urban Health Institute, 1500 South Fairfield Avenue, Chicago, IL, 60608, USA.
Sci Rep. 2022 Mar 16;12(1):4554. doi: 10.1038/s41598-022-08344-4.
Providers currently rely on universal screening to identify health-related social needs (HRSNs). Predicting HRSNs using EHR and community-level data could be more efficient and less resource intensive. Using machine learning models, we evaluated the predictive performance of HRSN status from EHR and community-level social determinants of health (SDOH) data for Medicare and Medicaid beneficiaries participating in the Accountable Health Communities Model. We hypothesized that Medicaid insurance coverage would predict HRSN status. All models significantly outperformed the baseline Medicaid hypothesis. AUCs ranged from 0.59 to 0.68. The top performance (AUC = 0.68 CI 0.66-0.70) was achieved by the "any HRSNs" outcome, which is the most useful for screening prioritization. Community-level SDOH features had lower predictive performance than EHR features. Machine learning models can be used to prioritize patients for screening. However, screening only patients identified by our current model(s) would miss many patients. Future studies are warranted to optimize prediction of HRSNs.
提供者目前依赖于普遍筛查来识别与健康相关的社会需求 (HRSNs)。使用电子健康记录 (EHR) 和社区级别的数据预测 HRSN 可能更有效率且资源密集度更低。我们使用机器学习模型,评估了参与责任医疗社区模式的医疗保险和医疗补助受益人的 EHR 和社区级别的健康社会决定因素 (SDOH) 数据对 HRSN 状态的预测性能。我们假设医疗补助保险范围可以预测 HRSN 状态。所有模型均显著优于基线医疗补助假设。AUC 范围从 0.59 到 0.68。表现最佳的模型(AUC=0.68,置信区间 0.66-0.70)是针对“任何 HRSN”结果,这对于筛查优先级划分最有用。社区级别的 SDOH 特征的预测性能低于 EHR 特征。机器学习模型可用于为筛查确定优先级。然而,仅对我们当前模型识别的患者进行筛查会遗漏许多患者。需要进一步的研究来优化 HRSN 的预测。