Suppr超能文献

从多维贫困视角分析美国的种族和族裔差异。

Analyzing Racial and Ethnic Differences in the USA through the Lens of Multidimensional Poverty.

作者信息

Dhongde Shatakshee, Dong Xiaoyu

机构信息

Georgia Institute of Technology, Atlanta, GA USA.

出版信息

J Econ Race Policy. 2022;5(4):252-266. doi: 10.1007/s41996-021-00093-2. Epub 2022 Jan 7.

Abstract

This paper provides a unified framework for practitioners who wish to estimate alternative indices of multidimensional poverty. These alternative indices are used to estimate multidimensional poverty in the USA over the last decade with a focus on analyzing trends by race and ethnicity. Individual level data on five different dimensions of well-being are compiled over the last decade using annual Census surveys. We find that multidimensional poverty in the USA declined over time regardless of the index used. A higher incidence of multidimensional poverty was observed among Hispanics, American Indians and Blacks. Poverty ranking among racial/ethnic groups was robust to the indices used. Estimates of alternative indices highlight different aspects of multidimensional poverty and provide complementary information on poverty in the USA in the last decade.

摘要

本文为希望估算多维贫困替代指标的从业者提供了一个统一框架。这些替代指标用于估算美国过去十年的多维贫困情况,重点是按种族和族裔分析趋势。过去十年间,利用年度人口普查调查汇编了关于幸福五个不同维度的个人层面数据。我们发现,无论使用何种指标,美国的多维贫困都随时间下降。西班牙裔、美国印第安人和黑人中观察到的多维贫困发生率更高。种族/族裔群体之间的贫困排名对所使用的指标具有稳健性。替代指标的估计突出了多维贫困的不同方面,并为美国过去十年的贫困情况提供了补充信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69dc/8739706/f2f1b6a32d98/41996_2021_93_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验