Lishchuk Anna, Csányi Evelin, Darroch Brice, Wilson Chloe, Nabok Alexei, Leggett Graham J
Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
Materials and Engineering Research Institute, Sheffield Hallam University City Campus Sheffield S1 1WB UK.
Chem Sci. 2022 Feb 3;13(8):2405-2417. doi: 10.1039/d1sc05842h. eCollection 2022 Feb 23.
Plexcitonic antenna complexes, inspired by photosynthetic light-harvesting complexes, are formed by attachment of chlorophylls (Chl) to poly(cysteine methacrylate) (PCysMA) scaffolds grown by atom-transfer radical polymerisation from gold nanostructure arrays. In these pigment-polymer antenna complexes, localised surface plasmon resonances on gold nanostructures are strongly coupled to Chl excitons, yielding hybrid light-matter states (plexcitons) that are manifested in splitting of the plasmon band. Modelling of the extinction spectra of these systems using a simple coupled oscillator model indicates that their coupling energies are up to twice as large as those measured for LHCs from plants and bacteria. Coupling energies are correlated with the exciton density in the grafted polymer layer, consistent with the collective nature of strong plasmon-exciton coupling. Steric hindrance in fully-dense PCysMA brushes limits binding of bulky chlorophylls, but the chlorophyll concentration can be increased to ∼2 M, exceeding that in biological light-harvesting complexes, by controlling the grafting density and polymerisation time. Moreover, synthetic plexcitonic antenna complexes display pH- and temperature-responsiveness, facilitating active control of plasmon-exciton coupling. Because of the wide range of compatible polymer chemistries and the mild reaction conditions, plexcitonic antenna complexes may offer a versatile route to programmable molecular photonic materials.
受光合光捕获复合物启发的plexcitonic天线复合物,是通过将叶绿素(Chl)附着到由金纳米结构阵列通过原子转移自由基聚合生长的聚(甲基丙烯酸半胱氨酸)(PCysMA)支架上形成的。在这些色素 - 聚合物天线复合物中,金纳米结构上的局域表面等离子体共振与Chl激子强烈耦合,产生混合光 - 物质态(plexcitons),这在等离子体带的分裂中表现出来。使用简单耦合振荡器模型对这些系统的消光光谱进行建模表明,它们的耦合能量高达从植物和细菌测量的LHCs耦合能量的两倍。耦合能量与接枝聚合物层中的激子密度相关,这与强等离子体 - 激子耦合的集体性质一致。完全致密的PCysMA刷中的空间位阻限制了庞大叶绿素的结合,但通过控制接枝密度和聚合时间,叶绿素浓度可以增加到~2 M,超过生物光捕获复合物中的浓度。此外,合成的plexcitonic天线复合物表现出pH和温度响应性,便于对等离子体 - 激子耦合进行主动控制。由于兼容聚合物化学的广泛范围和温和的反应条件,plexcitonic天线复合物可能为可编程分子光子材料提供一条通用途径。