Suppr超能文献

胶质母细胞瘤微环境:从坚不可摧的防御到治疗契机

Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance.

作者信息

Di Nunno Vincenzo, Franceschi Enrico, Tosoni Alicia, Gatto Lidia, Bartolini Stefania, Brandes Alba Ariela

机构信息

Department of Oncology, AUSL Bologna, Bologna, Italy.

Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.

出版信息

Front Oncol. 2022 Mar 2;12:852950. doi: 10.3389/fonc.2022.852950. eCollection 2022.

Abstract

Glioblastoma is an aggressive tumor and is associated with a dismal prognosis. The availability of few active treatments as well as the inexorable recurrence after surgery are important hallmarks of the disease. The biological behavior of glioblastoma tumor cells reveals a very complex pattern of genomic alterations and is partially responsible for the clinical aggressiveness of this tumor. It has been observed that glioblastoma cells can recruit, manipulate and use other cells including neurons, glial cells, immune cells, and endothelial/stromal cells. The final result of this process is a very tangled net of interactions promoting glioblastoma growth and progression. Nonetheless, recent data are suggesting that the microenvironment can also be a niche in which glioblastoma cells can differentiate into glial cells losing their tumoral phenotype. Here we summarize the known interactions between micro-environment and glioblastoma cells highlighting possible therapeutic implications.

摘要

胶质母细胞瘤是一种侵袭性肿瘤,预后不佳。可用的有效治疗方法较少以及术后不可避免的复发是该疾病的重要特征。胶质母细胞瘤肿瘤细胞的生物学行为显示出非常复杂的基因组改变模式,部分原因是该肿瘤的临床侵袭性。据观察,胶质母细胞瘤细胞可以募集、操纵和利用包括神经元、神经胶质细胞、免疫细胞以及内皮/基质细胞在内的其他细胞。这一过程的最终结果是形成一个非常复杂的相互作用网络,促进胶质母细胞瘤的生长和进展。尽管如此,最近的数据表明,微环境也可能是一个龛位,胶质母细胞瘤细胞可以在其中分化为神经胶质细胞,失去其肿瘤表型。在这里,我们总结了微环境与胶质母细胞瘤细胞之间已知的相互作用,突出了可能的治疗意义。

相似文献

1
Glioblastoma Microenvironment: From an Inviolable Defense to a Therapeutic Chance.
Front Oncol. 2022 Mar 2;12:852950. doi: 10.3389/fonc.2022.852950. eCollection 2022.
2
Insights in the immunobiology of glioblastoma.
J Mol Med (Berl). 2020 Jan;98(1):1-10. doi: 10.1007/s00109-019-01835-4. Epub 2019 Oct 24.
4
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment.
Cancers (Basel). 2022 May 26;14(11):2632. doi: 10.3390/cancers14112632.
5
Perspectives on Microglia-Based Immune Therapies Against Glioblastoma.
World Neurosurg. 2021 Oct;154:228-231. doi: 10.1016/j.wneu.2021.06.127.
6
Single-Cell Atlas Reveals Complexity of the Immunosuppressive Microenvironment of Initial and Recurrent Glioblastoma.
Front Immunol. 2020 May 7;11:835. doi: 10.3389/fimmu.2020.00835. eCollection 2020.
7
Pivotal Role of STAT3 in Shaping Glioblastoma Immune Microenvironment.
Cells. 2019 Nov 6;8(11):1398. doi: 10.3390/cells8111398.
8
Molecular Heterogeneity and Immunosuppressive Microenvironment in Glioblastoma.
Front Immunol. 2020 Jul 17;11:1402. doi: 10.3389/fimmu.2020.01402. eCollection 2020.
9
Radiation-Induced Alterations in the Recurrent Glioblastoma Microenvironment: Therapeutic Implications.
Front Oncol. 2018 Nov 8;8:503. doi: 10.3389/fonc.2018.00503. eCollection 2018.

引用本文的文献

1
3D Brain Vascular Niche Model Captures Glioblastoma Infiltration, Dormancy, and Gene Signatures.
Adv Sci (Weinh). 2025 Sep;12(33):e00689. doi: 10.1002/advs.202500689. Epub 2025 Jun 19.
2
Glycosylation Gene Signatures as Prognostic Biomarkers in Glioblastoma.
Ann Clin Transl Neurol. 2025 Jul;12(7):1378-1394. doi: 10.1002/acn3.70068. Epub 2025 May 19.
4
Kinin B Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments.
Pharmaceuticals (Basel). 2025 Apr 18;18(4):591. doi: 10.3390/ph18040591.
5
Recapitulating Glioma Stem Cell Niches Using 3D Spheroid Models for Glioblastoma Research.
Biosensors (Basel). 2024 Nov 7;14(11):539. doi: 10.3390/bios14110539.
6
First step results from a phase II study of a dendritic cell vaccine in glioblastoma patients (CombiG-vax).
Front Immunol. 2024 Aug 13;15:1404861. doi: 10.3389/fimmu.2024.1404861. eCollection 2024.
7
Neuroinflammation in Glioblastoma: Progress and Perspectives.
Brain Sci. 2024 Jul 9;14(7):687. doi: 10.3390/brainsci14070687.
9
Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers.
Int J Mol Sci. 2024 Mar 6;25(5):3040. doi: 10.3390/ijms25053040.
10
Glioblastoma Therapy: Past, Present and Future.
Int J Mol Sci. 2024 Feb 21;25(5):2529. doi: 10.3390/ijms25052529.

本文引用的文献

1
Designing Clinical Trials for Combination Immunotherapy: A Framework for Glioblastoma.
Clin Cancer Res. 2022 Feb 15;28(4):585-593. doi: 10.1158/1078-0432.CCR-21-2681.
2
TGF-β promotes microtube formation in glioblastoma through thrombospondin 1.
Neuro Oncol. 2022 Apr 1;24(4):541-553. doi: 10.1093/neuonc/noab212.
3
Glioblastoma: Emerging Treatments and Novel Trial Designs.
Cancers (Basel). 2021 Jul 26;13(15):3750. doi: 10.3390/cancers13153750.
5
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
6
Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward.
Immunotherapy. 2021 Aug;13(11):879-883. doi: 10.2217/imt-2021-0054. Epub 2021 Jun 3.
8
The white matter is a pro-differentiative niche for glioblastoma.
Nat Commun. 2021 Apr 12;12(1):2184. doi: 10.1038/s41467-021-22225-w.
9
Partitioned glioma heritability shows subtype-specific enrichment in immune cells.
Neuro Oncol. 2021 Aug 2;23(8):1304-1314. doi: 10.1093/neuonc/noab072.
10
Combination immunotherapy strategies for glioblastoma.
J Neurooncol. 2021 Feb;151(3):375-391. doi: 10.1007/s11060-020-03481-0. Epub 2021 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验