Suppr超能文献

纳入多基因风险评分和非遗传风险因素可提高亚洲女性乳腺癌风险预测能力。

Incorporating Polygenic Risk Scores and Nongenetic Risk Factors for Breast Cancer Risk Prediction Among Asian Women.

机构信息

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.

Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee.

出版信息

JAMA Netw Open. 2022 Mar 1;5(3):e2149030. doi: 10.1001/jamanetworkopen.2021.49030.

Abstract

IMPORTANCE

Polygenic risk scores (PRSs) have shown promise in breast cancer risk prediction; however, limited studies have been conducted among Asian women.

OBJECTIVE

To develop breast cancer risk prediction models for Asian women incorporating PRSs and nongenetic risk factors.

DESIGN, SETTING, AND PARTICIPANTS: This diagnostic study included women of Asian ancestry from the Asia Breast Cancer Consortium. PRSs were developed using data from genomewide association studies (GWASs) of breast cancer conducted among 123 041 women with Asian ancestry (including 18 650 women with breast cancer) using 3 approaches: (1) reported PRS for women with European ancestry; (2) breast cancer-associated single-nucleotide variations (SNVs) identified by fine-mapping of GWAS-identified risk loci; and (3) genomewide risk prediction algorithms. A nongenetic risk score (NGRS) was built, including 7 well-established nongenetic risk factors, using data of 416 case participants and 1558 control participants from a prospective cohort study. PRSs were initially validated in an independent data set including 1426 case participants and 1323 control participants and further evaluated, along with the NGRS, in the second data set including 368 case participants and 736 control participants nested within a prospective cohort study.

MAIN OUTCOMES AND MEASURES

Logistic regression was used to examine associations of risk scores with breast cancer risk to estimate odds ratios (ORs) with 95% CIs and area under the receiver operating characteristic curve (AUC).

RESULTS

A total of 126 894 women of Asian ancestry were included; 20 444 (16.1%) had breast cancer. The mean (SD) age ranged from 49.1 (10.8) to 54.4 (10.4) years for case participants and 50.6 (9.5) to 54.0 (7.4) years for control participants among studies that provided demographic characteristics. In the prospective cohort, a PRS with 111 SNVs developed using the fine-mapping approach (PRS111) showed a prediction performance comparable with a genomewide PRS that included more than 855 000 SNVs. The OR per SD increase of PRS111 score was 1.67 (95% CI, 1.46-1.92), with an AUC of 0.639 (95% CI, 0.604-0.674). The NGRS had a limited predictive ability (AUC, 0.565; 95% CI, 0.529-0.601). Compared with the average risk group (40th-60th percentile), women in the top 5% of PRS111 and NGRS were at a 3.84-fold (95% CI, 2.30-6.46) and 2.10-fold (95% CI, 1.22-3.62) higher risk of breast cancer, respectively. The prediction model including both PRS111 and NGRS achieved the highest prediction accuracy (AUC, 0.648; 95% CI, 0.613-0.682).

CONCLUSIONS AND RELEVANCE

In this study, PRSs derived using breast cancer risk-associated SNVs had similar predictive performance in Asian and European women. Including nongenetic risk factors in models further improved prediction accuracy. These findings support the utility of these models in developing personalized screening and prevention strategies.

摘要

重要性:多基因风险评分(PRSs)在乳腺癌风险预测中显示出一定的前景,但在亚洲女性中进行的研究有限。

目的:开发包含PRSs 和非遗传风险因素的亚洲女性乳腺癌风险预测模型。

设计、地点和参与者:本研究为诊断性研究,纳入了亚洲乳腺癌联盟的亚洲女性。PRSs 是使用包含 18650 名乳腺癌患者的 123041 名亚洲女性(包括 18650 名乳腺癌患者)的全基因组关联研究(GWAS)数据,采用 3 种方法开发的:(1)欧洲裔女性报告的 PRS;(2)通过 GWAS 确定的风险位点精细映射确定的乳腺癌相关单核苷酸变异(SNVs);(3)全基因组风险预测算法。使用前瞻性队列研究中 416 名病例参与者和 1558 名对照参与者的数据,建立了一个包括 7 个公认的非遗传风险因素的非遗传风险评分(NGRS)。PRSs 最初在一个独立的数据集中进行验证,该数据集包括 1426 名病例参与者和 1323 名对照参与者,然后在包括 368 名病例参与者和 736 名对照参与者的第二个数据集中进行评估,该数据集嵌套在一个前瞻性队列研究中。

主要结果和措施:使用逻辑回归来检查风险评分与乳腺癌风险的关联,以估计比值比(OR)及其 95%置信区间(CI)和接受者操作特征曲线下的面积(AUC)。

结果:共纳入 126894 名亚洲女性,20444 名(16.1%)患有乳腺癌。在提供人口统计学特征的研究中,病例参与者的平均(SD)年龄范围为 49.1(10.8)至 54.4(10.4)岁,而对照参与者的平均(SD)年龄为 50.6(9.5)至 54.0(7.4)岁。在前瞻性队列中,使用精细映射方法开发的包含 111 个 SNVs 的 PRS(PRS111)显示出与包含超过 855000 个 SNVs 的全基因组 PRS 相当的预测性能。PRS111 评分每增加 1 个 SD,OR 为 1.67(95%CI,1.46-1.92),AUC 为 0.639(95%CI,0.604-0.674)。NGRS 预测能力有限(AUC,0.565;95%CI,0.529-0.601)。与平均风险组(第 40-60 百分位)相比,PRS111 和 NGRS 评分最高的 5%的女性患乳腺癌的风险分别增加了 3.84 倍(95%CI,2.30-6.46)和 2.10 倍(95%CI,1.22-3.62)。包含 PRS111 和 NGRS 的预测模型达到了最高的预测准确性(AUC,0.648;95%CI,0.613-0.682)。

结论和相关性:在这项研究中,使用乳腺癌风险相关 SNVs 得出的 PRS 在亚洲和欧洲女性中的预测性能相似。在模型中纳入非遗传风险因素进一步提高了预测准确性。这些发现支持这些模型在制定个性化筛查和预防策略中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b16/8938714/781849e3a3c8/jamanetwopen-e2149030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验