Suppr超能文献

利用生物信息学分析非小细胞肺癌患者血浆中潜在的 miRNA-mRNA 调控网络。

Using biological information to analyze potential miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer.

机构信息

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Road West, Tianhe District, Guangzhou, 510630, China.

Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), No. 98, Fenghuang Road North, Zunyi, 563000, Guizhou, China.

出版信息

BMC Cancer. 2022 Mar 21;22(1):299. doi: 10.1186/s12885-022-09281-1.

Abstract

BACKGROUND

Lung cancer is the most common malignant tumor, and it has a high mortality rate. However, the study of miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer (NSCLC) is insufficient. Therefore, this study explored the differential expression of mRNA and miRNA in the plasma of NSCLC patients.

METHODS

The Gene Expression Omnibus (GEO) database was used to download microarray datasets, and the differentially expressed miRNAs (DEMs) were analyzed. We predicted transcription factors and target genes of the DEMs by using FunRich software and the TargetScanHuman database, respectively. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for GO annotation and KEGG enrichment analysis of downstream target genes. We constructed protein-protein interaction (PPI) and DEM-hub gene networks using the STRING database and Cytoscape software. The GSE20189 dataset was used to screen out the key hub gene. Using The Cancer Genome Atlas (TCGA) and UALCAN databases to analyze the expression and prognosis of the key hub gene and DEMs. Then, GSE17681 and GSE137140 datasets were used to validate DEMs expression. Finally, the receiver operating characteristic (ROC) curve was used to verify the ability of the DEMs to distinguish lung cancer patients from healthy patients.

RESULTS

Four upregulated candidate DEMs (hsa-miR199a-5p, hsa-miR-186-5p, hsa-miR-328-3p, and hsa-let-7d-3p) were screened from 3 databases, and 6 upstream transcription factors and 2253 downstream target genes were predicted. These genes were mainly enriched in cancer pathways and PI3k-Akt pathways. Among the top 30 hub genes, the expression of KLHL3 was consistent with the GSE20189 dataset. Except for let-7d-3p, the expression of other DEMs and KLHL3 in tissues were consistent with those in plasma. LUSC patients with high let-7d-3p expression had poor overall survival rates (OS). External validation demonstrated that the expression of hsa-miR-199a-5p and hsa-miR-186-5p in peripheral blood of NSCLC patients was higher than the healthy controls. The ROC curve confirmed that the DEMs could better distinguish lung cancer patients from healthy people.

CONCLUSION

The results showed that miR-199a-5p and miR-186-5p may be noninvasive diagnostic biomarkers for NSCLC patients. MiR-199a-5p-KLHL3 may be involved in the occurrence and development of NSCLC.

摘要

背景

肺癌是最常见的恶性肿瘤,死亡率较高。然而,目前对非小细胞肺癌(NSCLC)患者血浆中 miRNA-mRNA 调控网络的研究还不够充分。因此,本研究旨在探讨 NSCLC 患者血浆中 mRNA 和 miRNA 的差异表达。

方法

使用基因表达综合数据库(GEO)下载微阵列数据集,并进行差异表达 miRNA(DEM)分析。使用 FunRich 软件和 TargetScanHuman 数据库分别预测 DEMs 的转录因子和靶基因。使用 DAVID 数据库对下游靶基因进行 GO 注释和 KEGG 富集分析。使用 STRING 数据库和 Cytoscape 软件构建蛋白质-蛋白质相互作用(PPI)和 DEM-枢纽基因网络。使用 GSE20189 数据集筛选关键枢纽基因。利用癌症基因组图谱(TCGA)和 UALCAN 数据库分析关键枢纽基因和 DEMs 的表达和预后。然后,使用 GSE17681 和 GSE137140 数据集验证 DEMs 的表达。最后,使用受试者工作特征(ROC)曲线验证 DEMs 区分肺癌患者和健康患者的能力。

结果

从 3 个数据库中筛选出 4 个上调候选 DEMs(hsa-miR199a-5p、hsa-miR-186-5p、hsa-miR-328-3p 和 hsa-let-7d-3p),预测到 6 个上游转录因子和 2253 个下游靶基因。这些基因主要富集在癌症途径和 PI3k-Akt 途径中。在 30 个枢纽基因中,KLHL3 的表达与 GSE20189 数据集一致。除了 let-7d-3p 外,其他 DEMs 和 KLHL3 在组织中的表达与血浆中的表达一致。高 let-7d-3p 表达的 LUSC 患者总生存率(OS)较差。外部验证表明,NSCLC 患者外周血中 hsa-miR-199a-5p 和 hsa-miR-186-5p 的表达高于健康对照者。ROC 曲线证实,DEMs 可以更好地区分肺癌患者和健康人群。

结论

结果表明,miR-199a-5p 和 miR-186-5p 可能是非小细胞肺癌患者的非侵入性诊断生物标志物。miR-199a-5p-KLHL3 可能参与 NSCLC 的发生发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/117d/8939143/0c3ad8a50a47/12885_2022_9281_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验