IEEE Trans Biomed Eng. 2022 Oct;69(10):3039-3050. doi: 10.1109/TBME.2022.3160447. Epub 2022 Sep 19.
Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity (FC) patterns have been extensively used to delineate global functional organization of the human brain in healthy development and neuropsychiatric disorders. In this paper, we investigate how FC in males and females differs in an age prediction framework.
We first estimate FC between regions-of-interest (ROIs) using distance correlation instead of Pearson's correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex between-ROI interactions. Then, we propose a novel non-convex multi-task learning (NC-MTL) model to study age-related gender differences in FC, where age prediction for each gender group is viewed as one task, and a composite regularizer with a combination of the non-convex l and l terms is introduced for selecting both common and task-specific features.
We validate the effectiveness of our NC-MTL model with distance correlation-based FC derived from rs-fMRI for predicting ages of both genders. The experimental results on the Philadelphia Neurodevelopmental Cohort demonstrate that our NC-MTL model outperforms several other competing MTL models in age prediction. We also compare the age prediction performance of our NC-MTL model using FC estimated by Pearson's correlation and distance correlation, which shows that distance correlation-based FC is more discriminative for age prediction than Pearson's correlation-based FC.
This paper presents a novel framework for functional connectome developmental studies, characterizing developmental gender differences in FC patterns.
静息态功能磁共振成像(rs-fMRI)衍生的功能连接(FC)模式已被广泛用于描绘健康发育和神经精神障碍中人类大脑的整体功能组织。在本文中,我们研究了男性和女性的 FC 在年龄预测框架中如何存在差异。
我们首先使用距离相关系数而不是皮尔逊相关系数来估计 ROI 之间的 FC。距离相关系数作为一种多元统计方法,探索个体 ROI 内体素时间序列的空间关系,并测量线性和非线性依赖性,捕捉更复杂的 ROI 之间的相互作用。然后,我们提出了一种新的非凸多任务学习(NC-MTL)模型,用于研究 FC 中的年龄相关性别差异,其中每个性别组的年龄预测被视为一个任务,并引入了具有 l 和 l 项组合的复合正则化器,用于选择共同和特定于任务的特征。
我们使用基于 rs-fMRI 的距离相关 FC 来验证我们的 NC-MTL 模型预测两性年龄的有效性。费城神经发育队列的实验结果表明,我们的 NC-MTL 模型在年龄预测方面优于其他几种竞争的 MTL 模型。我们还比较了使用皮尔逊相关和距离相关系数估计的 FC 的 NC-MTL 模型的年龄预测性能,结果表明,基于距离相关的 FC 比基于皮尔逊相关的 FC 更具年龄预测的判别力。
本文提出了一种新的功能连接体发育研究框架,描述了 FC 模式中的发育性别差异。