Suppr超能文献

蓝绿猎蝽功能前肠与葡萄木质部汁液界面的流态动力学模拟及其对韧皮部难养菌传播的影响。

Fluid dynamic simulations at the interface of the blue-green sharpshooter functional foregut and grapevine xylem sap with implications for transmission of Xylella fastidiosa.

机构信息

Drexel University, Department of Civil, Architectural, and Environmental Engineering, Philadelphia, PA, United States of America.

University of California, Riverside, Department of Chemical and Environmental Engineering, Riverside, CA, United States of America.

出版信息

PLoS One. 2022 Mar 22;17(3):e0265762. doi: 10.1371/journal.pone.0265762. eCollection 2022.

Abstract

Xylella fastidiosa is a multi-continental, lethal, plant pathogenic bacterium that is transmitted by sharpshooter leafhoppers (Insecta: Hemiptera: Cicadellidae: Cicadellinae) and adult spittlebugs (Hemiptera: Aphrophoridae). The bacterium forms biofilms in plant xylem and the functional foregut of the insect. These biofilms serve as sources of inoculum for insect acquisition and subsequent inoculation to a healthy plant. In this study, 3D fluid dynamic simulations were performed for bidirectional cibarial propulsion of xylem sap through tube-like grapevine xylem and an anatomically accurate model of the functional foregut of the blue-green sharpshooter, Graphocephala atropunctata. The analysis supports a model of how fluid dynamics influence X. fastidiosa transmission. The model supports the hypothesis that X. fastidiosa inoculation is mostly driven by detachment of bacteria from the foregut due to high-velocity flow during egestion (outward fluid flow from the stylets). Acquisition occurs by fluid dynamics during both egestion and ingestion (fluid uptake through the stylets and swallowing). These simulation results are supported by previously reported X. fastidiosa colonization patterns in the functional foregut and sharpshooter stylet probing behaviors. The model indicates that xylem vessel diameter influences drag forces imposed on xylem wall-adherent bacteria; thus, vessel diameter may be an important component of the complex transmission process. Results from this study are directly applicable to development of novel grapevine resistance traits via electropenetrographic monitoring of vector acquisition and inoculation behaviors.

摘要

韧皮部难养菌是一种多大陆性的、致命的植物病原菌,由尖音叶蝉(昆虫纲:半翅目:叶蝉科:叶蝉亚科)和成年沫蝉(半翅目:沫蝉科)传播。该细菌在植物木质部和昆虫功能前肠中形成生物膜。这些生物膜作为昆虫获得细菌的接种源,并随后接种到健康植物中的来源。在这项研究中,通过管型葡萄木质部和蓝绿尖音叶蝉功能前肠的解剖精确模型,对木质部汁液的双向口器推进进行了 3D 流体动力学模拟。该分析支持了一个关于流体动力学如何影响韧皮部难养菌传播的模型。该模型支持了这样一种假设,即韧皮部难养菌接种主要是由于在排粪过程中(从口针向外的流体流动)高速流动而从昆虫前肠上脱落的细菌所驱动。通过排粪和摄食期间的流体动力学来实现获得(通过口针摄取流体和吞咽)。这些模拟结果得到了功能前肠中先前报道的韧皮部难养菌定植模式和尖音叶蝉口针探测行为的支持。该模型表明,木质部导管直径影响施加在木质部壁附着细菌上的阻力;因此,导管直径可能是复杂传播过程的一个重要组成部分。本研究的结果可直接应用于通过电穿孔监测载体获得和接种行为来开发新型葡萄抗性特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da94/8939801/ead59e9cb896/pone.0265762.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验