Suppr超能文献

无标记超分辨率成像技术。

Label-Free Super-Resolution Imaging Techniques.

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA; email:

出版信息

Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):37-55. doi: 10.1146/annurev-anchem-061020-014723. Epub 2022 Mar 22.

Abstract

Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.

摘要

生物和材料样本中包含用常规显微镜技术无法分辨的纳米级异质结构。超分辨率荧光方法可以突破光学衍射极限来观察这些特征,但它们需要对样品进行荧光标记。在过去的十年中,人们已经开发出了不需要使用标记的超分辨率技术,这些无标记技术涵盖了各种不同的方法,包括结构照明、瞬态吸收、红外吸收和相干拉曼光谱学。许多方法都受到了广泛成功的荧光技术的启发,如受激发射损耗(STED)显微镜、光激活定位显微镜(PALM)和随机光学重建显微镜(STORM)。在这篇综述中,我们讨论了这些领域的进展,以及在达到与荧光方法相当的分辨率方面所面临的挑战和前景。

相似文献

1
Label-Free Super-Resolution Imaging Techniques.
Annu Rev Anal Chem (Palo Alto Calif). 2022 Jun 13;15(1):37-55. doi: 10.1146/annurev-anchem-061020-014723. Epub 2022 Mar 22.
2
Recent advances in super-resolution fluorescence imaging and its applications in biology.
J Genet Genomics. 2013 Dec 20;40(12):583-95. doi: 10.1016/j.jgg.2013.11.003. Epub 2013 Nov 23.
3
Review of super-resolution fluorescence microscopy for biology.
Appl Spectrosc. 2011 Sep;65(9):967-80. doi: 10.1366/11-06398.
5
Super-Resolution Fluorescence Microscopy for Single Cell Imaging.
Adv Exp Med Biol. 2018;1068:59-71. doi: 10.1007/978-981-13-0502-3_6.
7
Stimulated Raman versus Inverse Raman: Investigating Depletion Mechanisms for Super-Resolution Raman Microscopy.
J Phys Chem B. 2023 Jan 12;127(1):26-36. doi: 10.1021/acs.jpcb.2c04415. Epub 2022 Dec 28.
8
Super-resolution Microscopy - Applications in Plant Cell Research.
Front Plant Sci. 2017 Apr 13;8:531. doi: 10.3389/fpls.2017.00531. eCollection 2017.
9
Super-resolution microscopy for analyzing neuromuscular junctions and synapses.
Neurosci Lett. 2020 Jan 10;715:134644. doi: 10.1016/j.neulet.2019.134644. Epub 2019 Nov 22.
10
Managing the Introduction of Super-Resolution Microscopy into a Core Facility.
Methods Mol Biol. 2017;1663:15-19. doi: 10.1007/978-1-4939-7265-4_2.

引用本文的文献

1
From superior contrast to super resolution label free optical microscopy.
Npj Imaging. 2025 Jan 13;3(1):1. doi: 10.1038/s44303-024-00064-w.
2
Multiparametric super-resolution optoacoustic imaging with ICG-tagged microbubbles.
Mater Today Bio. 2025 May 12;32:101865. doi: 10.1016/j.mtbio.2025.101865. eCollection 2025 Jun.
3
Advancing Platelet Research Through Live-Cell Imaging: Challenges, Techniques, and Insights.
Sensors (Basel). 2025 Jan 16;25(2):491. doi: 10.3390/s25020491.
4
3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration.
Nanophotonics. 2023 Jan 13;12(8):1537-1548. doi: 10.1515/nanoph-2022-0629. eCollection 2023 Apr.
5
Surpassing the Diffraction Limit in Label-Free Optical Microscopy.
ACS Photonics. 2024 Aug 27;11(10):3907-3921. doi: 10.1021/acsphotonics.4c00745. eCollection 2024 Oct 16.
6
NDUFS4 regulates cristae remodeling in diabetic kidney disease.
Nat Commun. 2024 Mar 4;15(1):1965. doi: 10.1038/s41467-024-46366-w.
7
Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery.
Adv Sci (Weinh). 2024 Apr;11(14):e2308659. doi: 10.1002/advs.202308659. Epub 2024 Jan 28.
8
Deep Learning Approach for the Localization and Analysis of Surface Plasmon Scattering.
Sensors (Basel). 2023 Sep 27;23(19):8100. doi: 10.3390/s23198100.
9
Ultrafast and Nanoscale Energy Transduction Mechanisms and Coupled Thermal Transport across Interfaces.
ACS Nano. 2023 Aug 8;17(15):14253-14282. doi: 10.1021/acsnano.3c02417. Epub 2023 Jul 17.

本文引用的文献

1
Super-resolution label-free volumetric vibrational imaging.
Nat Commun. 2021 Jun 15;12(1):3648. doi: 10.1038/s41467-021-23951-x.
2
Switchable stimulated Raman scattering microscopy with photochromic vibrational probes.
Nat Commun. 2021 May 25;12(1):3089. doi: 10.1038/s41467-021-23407-2.
3
Bond-selective imaging by optically sensing the mid-infrared photothermal effect.
Sci Adv. 2021 May 14;7(20). doi: 10.1126/sciadv.abg1559. Print 2021 May.
4
High spatial-resolution imaging of label-free protein aggregates by VISTA.
Analyst. 2021 Jun 28;146(13):4135-4145. doi: 10.1039/d1an00060h.
5
Photoswitchable stimulated Raman scattering spectroscopy and microscopy.
Opt Lett. 2021 May 1;46(9):2176-2179. doi: 10.1364/OL.418240.
6
Direct Imaging of Integrated Circuits in CPU with 60 nm Super-Resolution Optical Microscope.
Nano Lett. 2021 May 12;21(9):3887-3893. doi: 10.1021/acs.nanolett.1c00403. Epub 2021 Apr 27.
7
Super-resolution vibrational microscopy by stimulated Raman excited fluorescence.
Light Sci Appl. 2021 Apr 20;10(1):87. doi: 10.1038/s41377-021-00518-5.
8
Toward photoswitchable electronic pre-resonance stimulated Raman probes.
J Chem Phys. 2021 Apr 7;154(13):135102. doi: 10.1063/5.0043791.
9
Super-resolution plasmonic imaging via scattering saturation STED.
Chem Commun (Camb). 2021 Apr 11;57(28):3492-3495. doi: 10.1039/d0cc08375e. Epub 2021 Mar 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验