Suppr超能文献

基于多方向感知生成对抗网络的阿尔茨海默病形态学特征可视化。

Morphological Feature Visualization of Alzheimer's Disease via Multidirectional Perception GAN.

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Aug;34(8):4401-4415. doi: 10.1109/TNNLS.2021.3118369. Epub 2023 Aug 4.

Abstract

The diagnosis of early stages of Alzheimer's disease (AD) is essential for timely treatment to slow further deterioration. Visualizing the morphological features for early stages of AD is of great clinical value. In this work, a novel multidirectional perception generative adversarial network (MP-GAN) is proposed to visualize the morphological features indicating the severity of AD for patients of different stages. Specifically, by introducing a novel multidirectional mapping mechanism into the model, the proposed MP-GAN can capture the salient global features efficiently. Thus, using the class discriminative map from the generator, the proposed model can clearly delineate the subtle lesions via MR image transformations between the source domain and the predefined target domain. Besides, by integrating the adversarial loss, classification loss, cycle consistency loss, and L1 penalty, a single generator in MP-GAN can learn the class discriminative maps for multiple classes. Extensive experimental results on Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that MP-GAN achieves superior performance compared with the existing methods. The lesions visualized by MP-GAN are also consistent with what clinicians observe.

摘要

阿尔茨海默病(AD)早期阶段的诊断对于及时治疗以减缓进一步恶化至关重要。可视化 AD 早期阶段的形态特征具有重要的临床价值。在这项工作中,提出了一种新颖的多方向感知生成对抗网络(MP-GAN),用于可视化形态特征,以指示不同阶段患者 AD 的严重程度。具体来说,通过在模型中引入新颖的多方向映射机制,所提出的 MP-GAN 可以有效地捕获显著的全局特征。因此,使用来自生成器的类别判别映射,所提出的模型可以通过源域和预定义目标域之间的 MR 图像变换清晰地描绘出细微的病变。此外,通过整合对抗损失、分类损失、循环一致性损失和 L1 惩罚,MP-GAN 中的单个生成器可以学习多个类别的类别判别图。在阿尔茨海默病神经影像学倡议(ADNI)数据集上的广泛实验结果表明,MP-GAN 与现有方法相比具有优越的性能。MP-GAN 可视化的病变也与临床医生观察到的一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验