Suppr超能文献

基于暗光下去识别的私人面部图像生成方法。

Private Face Image Generation Method Based on Deidentification in Low Light.

机构信息

School of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China.

Sifang College, Shijiazhuang Tiedao University, Shijiazhuang 051132, China.

出版信息

Comput Intell Neurosci. 2022 Mar 17;2022:5818180. doi: 10.1155/2022/5818180. eCollection 2022.

Abstract

The existing face image recognition algorithm can accurately identify underexposed facial images, but the abuse of face image recognition technology can associate face features with personally identifiable information, resulting in privacy disclosure of the users. The paper puts forward a method for private face image generation based on deidentification under low light. First of all, the light enhancement and attenuation networks are pretrained using the training set, and low-light face images in the test set are input into the light enhancement network for photo enhancement. Then the facial area is captured by the face interception network, and corresponding latent code will be created through the latent code generation network and feature disentanglement will be done. Tiny noise will be added to the latent code by the face generation network to create deidentified face images which will be input in a light attenuation network to generate private facial images in a low-lighting style. At last, experiments show that, compared with other state-of-the-art algorithms, this method is more successful in generating low-light private face images with the most similar structure to original photos. It protects users' privacy effectively by reducing the accuracy of the face recognition network, while also ensuring the practicability of the images.

摘要

现有的人脸图像识别算法可以准确地识别曝光不足的人脸图像,但人脸图像识别技术的滥用可能会将人脸特征与可识别个人身份的信息相关联,从而导致用户的隐私泄露。本文提出了一种基于低光去识别的私有人脸图像生成方法。首先,使用训练集对光增强和衰减网络进行预训练,将测试集中的低光人脸图像输入到光增强网络中进行照片增强。然后通过人脸截取网络捕获人脸区域,通过潜在码生成网络生成相应的潜在码,并进行特征解缠。通过人脸生成网络向潜在码中添加微小的噪声,生成去识别的人脸图像,并将其输入到光衰减网络中,以生成具有低光风格的私有面部图像。最后,实验表明,与其他最先进的算法相比,该方法在生成具有与原始照片最相似结构的低光私有人脸图像方面更成功。通过降低人脸识别网络的准确性,有效地保护了用户的隐私,同时也保证了图像的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68ed/8947894/527bd6528995/CIN2022-5818180.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验