Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada.
Laboratory of Human Retrovirology, Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada.
J Virol. 2022 Apr 27;96(8):e0012822. doi: 10.1128/jvi.00128-22. Epub 2022 Mar 28.
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRA↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPS↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.
刺突蛋白(S)是严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的主要成分,可与血管紧张素转换酶 2(ACE2)受体结合后感染肺部和其他组织。为实现有效感染,S 蛋白需要在两个位点(S1/S2 和 S2')被切割。SARS-CoV-2 感染细胞和小动物模型的过程中,S 蛋白在 S1/S2 处(PRA↓)[带下划线的碱性氨基酸是指弗林蛋白酶识别所必需的关键残基]的“预激活”(priming)至关重要。本研究首次通过蛋白质组学明确鉴定出融合激活位点 S2'为 KPS↓(带下划线的碱性氨基酸是指弗林蛋白酶识别所必需的关键残基),并证明 ACE2 与 S 蛋白结合可显著增强该位点的切割。新型药理学弗林蛋白酶抑制剂(BOS 抑制剂)可在 HeLa 细胞中完全抑制内源性 S 蛋白在这两个位点的加工,同时联合使用弗林蛋白酶(BOS)和跨膜丝氨酸蛋白酶 2(TMPRSS2)抑制剂(camostat)可完全阻止肺源性 Calu-3 细胞感染 SARS-CoV-2。细胞间融合和 S 蛋白加工的定量分析表明,在没有 S1/S2 预激活的情况下,TMPRSS2 介导的融合增强需要 ACE2 脱落的 TMPRSS2。我们进一步证明 ACE2 的 collectrin 二聚化结构域对于 TMPRSS2 对细胞间融合的影响是必需的。总体而言,我们的研究结果表明,弗林蛋白酶和 TMPRSS2 在病毒进入和感染中协同作用,支持联合使用弗林蛋白酶和 TMPRSS2 抑制剂作为有效的 SARS-CoV-2 抗病毒药物。 引起 COVID-19 的病毒 SARS-CoV-2 已导致全球超过 610 万人死亡。病毒的刺突蛋白(S)通过结合血管紧张素转换酶 2(ACE2)受体,指导肺部和其他组织的感染。为实现有效感染,S 蛋白在两个位点(S1/S2 和 S2')被切割。S1/S2 处的切割诱导构象变化,有利于 S 蛋白与 ACE2 的识别。S2'的切割对于触发膜融合和病毒进入宿主细胞至关重要。我们的研究强调了 SARS-CoV-2 进入宿主细胞过程中 S 蛋白、ACE2 与宿主蛋白酶弗林蛋白酶和 TMPRSS2 之间相互作用的复杂动态,并表明非毒性弗林蛋白酶抑制剂与 TMPRSS2 抑制剂的联合使用可显著降低肺细胞中的病毒进入,病毒感染平均协同降低约 95%。这是一种强有力的新型抗病毒方法,可以减少感染 SARS-CoV-2 或未来相关冠状病毒的个体中的病毒传播。