Suppr超能文献

使用集成算法解决类别不平衡问题:主动脉夹层筛查的应用。

Solving the class imbalance problem using ensemble algorithm: application of screening for aortic dissection.

机构信息

School of Automation, Central South University, Changsha, 410083, Hunan, China.

Hunan Zixing Artificial Intelligence Research Institute, Changsha, 410007, Hunan, China.

出版信息

BMC Med Inform Decis Mak. 2022 Mar 28;22(1):82. doi: 10.1186/s12911-022-01821-w.

Abstract

BACKGROUND

Imbalance between positive and negative outcomes, a so-called class imbalance, is a problem generally found in medical data. Despite various studies, class imbalance has always been a difficult issue. The main objective of this study was to find an effective integrated approach to address the problems posed by class imbalance and to validate the method in an early screening model for a rare cardiovascular disease aortic dissection (AD).

METHODS

Different data-level methods, cost-sensitive learning, and the bagging method were combined to solve the problem of low sensitivity caused by the imbalance of two classes of data. First, feature selection was applied to select the most relevant features using statistical analysis, including significance test and logistic regression. Then, we assigned two different misclassification cost values for two classes, constructed weak classifiers based on the support vector machine (SVM) model, and integrated the weak classifiers with undersampling and bagging methods to build the final strong classifier. Due to the rarity of AD, the data imbalance was particularly prominent. Therefore, we applied our method to the construction of an early screening model for AD disease. Clinical data of 523,213 patients from the Institute of Hypertension, Xiangya Hospital, Central South University were used to verify the validity of this method. In these data, the sample ratio of AD patients to non-AD patients was 1:65, and each sample contained 71 features.

RESULTS

The proposed ensemble model achieved the highest sensitivity of 82.8%, with training time and specificity reaching 56.4 s and 71.9% respectively. Additionally, it obtained a small variance of sensitivity of 19.58 × 10 in the seven-fold cross validation experiment. The results outperformed the common ensemble algorithms of AdaBoost, EasyEnsemble, and Random Forest (RF) as well as the single machine learning (ML) methods of logistic regression, decision tree, k nearest neighbors (KNN), back propagation neural network (BP) and SVM. Among the five single ML algorithms, the SVM model after cost-sensitive learning method performed best with a sensitivity of 79.5% and a specificity of 73.4%.

CONCLUSIONS

In this study, we demonstrate that the integration of feature selection, undersampling, cost-sensitive learning and bagging methods can overcome the challenge of class imbalance in a medical dataset and develop a practical screening model for AD, which could lead to a decision support for screening for AD at an early stage.

摘要

背景

正、负结果之间的不平衡,即所谓的类别不平衡,是医学数据中普遍存在的问题。尽管已经有了各种研究,但类别不平衡一直是一个难题。本研究的主要目的是找到一种有效的综合方法来解决类别不平衡带来的问题,并在一种罕见的心血管疾病主动脉夹层(AD)的早期筛查模型中验证该方法。

方法

将不同的数据级方法、代价敏感学习和套袋法相结合,以解决因两类数据不平衡而导致的低敏感性问题。首先,使用统计分析(包括显著性检验和逻辑回归)来进行特征选择,以选择最相关的特征。然后,我们为两类数据分配了两个不同的误分类代价值,基于支持向量机(SVM)模型构建了弱分类器,并使用欠采样和套袋法对弱分类器进行集成,构建最终的强分类器。由于 AD 的罕见性,数据的不平衡性尤为突出。因此,我们将该方法应用于 AD 疾病的早期筛查模型的构建。使用来自中南大学湘雅医院高血压研究所的 523213 名患者的临床数据验证了该方法的有效性。在这些数据中,AD 患者与非 AD 患者的样本比例为 1:65,每个样本包含 71 个特征。

结果

所提出的集成模型实现了最高的敏感性为 82.8%,训练时间和特异性分别达到 56.4 s 和 71.9%。此外,在七重交叉验证实验中,它的敏感性方差小到 19.58×10。结果优于常见的集成算法 AdaBoost、EasyEnsemble 和随机森林(RF)以及逻辑回归、决策树、k 近邻(KNN)、反向传播神经网络(BP)和 SVM 等五种单一机器学习(ML)方法。在五种单一 ML 算法中,经过代价敏感学习方法的 SVM 模型表现最好,敏感性为 79.5%,特异性为 73.4%。

结论

在本研究中,我们证明了特征选择、欠采样、代价敏感学习和套袋法的集成可以克服医学数据集的类别不平衡挑战,并开发出一种用于 AD 的实用筛查模型,这可能为 AD 的早期筛查提供决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验